
Lecture No 4 : Algebraic Equations from a Class of Integer Polynomials Having

Lacunarity Conditions. II.

In this lecture we show that an universal non-trivial minorant of
M(α) for α a reciprocal nonzero real > 1 algebraic integer which is not
root of unity can be obtained from the class of integer polynomials

C := {−1 + x + xn + xm1 + xm2 + . . .+ xms :

n ≥ 3, m1−n ≥ n−1,mq−mq−1 ≥ n−1 for 2≤ q ≤ s}.

More precisely : from the curve formed by the lenticular roots of the Ps
of C .
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Recall : for P ∈ C , say P(x) =−1 + x + xn + xm1 + xm2 + . . .+ xms , with

n ≥ 3, m1−n ≥ n−1,mq−mq−1 ≥ n−1 for 2≤ q ≤ s,

P(x) = A(x)B(x)C(x)

with

- A(x) product of cyclotomic polynomials, often trivial (75 %),

- B(x) product of reciprocal non-cyclotomic irreducible factors,
conjectured to be inexistant,

- C(x) irreducible non-reciprocal (unique factor), vanishing at the unique
zero of P in (0,1).

Let γ be the unique zero of P(x) in (0,1) : C(γ) = 0.

The lenticulus of roots of P is composed of Galois conjugates of C,
conjugated with γ, and γ is non-reciprocal. Existence domain : ℜ(z) > 1/2.
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Example with n = 37 :

P(x) := (−1 + x + x37) + x81 + x140 + x184 + x232 + x285 + x350 + x389

+x450 + x514 + x550 + x590 + x649
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FIGURE: a) The 37 zeroes of G37(x) =−1 + x + x37, b) The 649 zeroes of
P(x) = G37(x) + . . .+ x649. The lenticulus of roots of P is obtained by a very
slight deformation of the restriction of the lenticulus of roots of G37 to the
angular sector |argz|< π/18, off the unit circle. The other roots
(nonlenticular) of P can be found in a narrow annular neighbourhood of
|z|= 1.
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Q1 : Is it possible to solve the Problem of Lehmer for the subcollection of C of
the trinomials (−1 + x + xn)n≥3 using the lenticuli of roots in ℜ > 1/2 ?

Yes + method asymptotic expansions of the roots. Limit Mahler measure
= 1.38....

Q2 : Is it possible to solve the Problem of Lehmer for the complete collection
C of polynomials (P)n,m1,m2,...,ms using the curves formed by their lenticuli of
roots in ℜ > 1/2, or an angular part of them, without taking into account the
other roots stuck on the unit circle ?

Yes + same method, but useless since all γs are non-reciprocal. And by
C. Smyth’s Theorem we know that

M(P) = M(A)M(B)M(C) = M(C) = M(γ)≥ 1.32 . . .smallest Pisot number

since the γs are non-reciprocal.
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Q3 : Is it possible to solve the Problem of Lehmer for the set of real
reciprocal algebraic integers β > 1 by extending the method and
using the above curves formed by the lenticuli of roots of the Ps of C in
ℜ > 1/2, or an angular part of them ?

Yes + same method + completion of the lenticular curves using
Rényi-Parry dynamical systems of numeration + rewriting trails +
identification with Kala-Vavra’s Theorem.
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Lecture 4.II :

- Solution of the Problem of Lehmer, via lenticuli of roots

- Rényi dynamical systems of numeration

- Completion of the lenticular curve, rewriting trails

- Identification of lenticular roots, Theorem of Kala - Vavra

- Dobrowolski type minoration, minoration of the Mahler measure.

ooooooo
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Rényi Dynamical system of numeration - the β -shift, β -expansions

Let β > 1 be a real number and let Aβ := {0,1,2, . . . ,dβ −1e}. If β is not an
integer, then dβ −1e= bβc.

Let x be a real number in the interval [0,1]. A representation in base β (or a
β -representation ; or a β -ary representation if β is an integer) of x is an
infinite word (xi )i≥1 of A N

β
such that

x = ∑
i≥1

xiβ
−i .

The main difference with the case where β is an integer is that x may have
several representations.
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A particular β -representation, called the β -expansion, or the greedy
β -expansion, and denoted by dβ (x), of x can be computed either by the
greedy algorithm, or equivalently by the β -transformation

Tβ : x 7→ βx ( mod 1) = {βx}.

The dynamical system ([0,1],Tβ ) is called the Rényi-Parry numeration
system in base β , the iterates of Tβ providing the successive digits xi of
dβ (x). Denoting T 0

β
:= Id,T 1

β
:= Tβ ,T i

β
:= Tβ (T i−1

β
) for all i ≥ 1, we have :

dβ (x) = (xi )i≥1 if and only if xi = bβT i−1
β

(x)c

and we write the β -expansion of x as

x = ·x1x2x3 . . . instead of x =
x1

β
+

x2

β 2 +
x3

β 3 + . . . . (1)

The digits are x1 = bβxc, x2 = bβ{βx}c, x3 = bβ{β{βx}}c, . . . , depend upon
β .
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The Rényi-Parry numeration dynamical system in base β allows the coding,
as a (positional) β -expansion, of any real number x .

Indeed, if x > 0, there exists k ∈ Z such that β k ≤ x < β k+1. Hence
1/β ≤ x/β k+1 < 1 ; thus it is enough to deal with representations and
β -expansions of numbers in the interval [1/β ,1]. In the case where k ≥ 1, the
β -expansion of x is

x = x1x2 . . .xk ·xk+1xk+2 . . . ,

with x1 = bβ (x/β k+1)c, x2 = bβ{β (x/β k+1)}c, x3 = bβ{β{β (x/β k+1)}}c, etc.

If x < 0, by definition : dβ (x) =−dβ (−x).

The part x1x2 . . .xk is called the β -integer part of the β -expansion of x , and
the terminant ·xk+1xk+2 . . . is called the β -fractional part of dβ (x).
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The set A N
β

is endowed with the lexicographical order (not usual in number
theory), and the product topology. The one-sided shift σ : (xi )i≥1 7→ (xi+1)i≥1
leaves invariant the subset Dβ of the β -expansions of real numbers in [0,1).
The closure of Dβ in A N

β
is called the β -shift, and is denoted by Sβ . The

β -shift is a subshift of A N
β

, for which

dβ ◦Tβ = σ ◦dβ

holds on the interval [0,1]. In other terms, Sβ is such that

x ∈ [0,1] ←→ (xi )i≥1 ∈ Sβ (2)

is bijective.

This one-to-one correspondence between the totally ordered interval
[0,1] and the totally lexicographically ordered β -shift Sβ is fundamental.

J.-L. Verger-Gaugry (Lecture 4-I)
May 2 - DiophantLehmer 10

/ 38



Parry has shown that only one sequence of digits entirely controls the β -shift
Sβ , and that the ordering is preserved when dealing with the greedy
β -expansions.

Let us make precise how the usual inequality “<” on the real line is
transformed into the inequality “<lex ”, meaning “lexicographically smaller with
all its shifts”.

The greatest element of Sβ : it comes from x = 1 and is given either by the
Rényi β -expansion of 1, or by a slight modification of it in case of finiteness.
Let us make it precise. The greedy β -expansion of 1 is by definition denoted
by

dβ (1) = 0.t1t2t3 . . . and uniquely corresponds to 1 =
+∞

∑
i=1

tiβ−i , (3)

where

t1 = bβc, t2 = bβ{β}c= bβTβ (1)c, t3 = bβ{β{β}}c= bβT 2
β

(1)c, . . . (4)
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The sequence (ti )i≥1 is given by the orbit of one (T j
β

(1))j≥0 by

T 0
β

(1) = 1, T j
β

(1) = β
j − t1β

j−1− t2β
j−2− . . .− tj ∈ Z[β ]∩ [0,1] (5)

for all j ≥ 1. The digits ti belong to Aβ . We say that dβ (1) is finite if it ends in
infinitely many zeros.

Definition

If dβ (1) is finite or ultimately periodic (i.e. eventually periodic), then the real
number β > 1 is said to be a Parry number. In particular, a Parry number β is
said to be simple if dβ (1) is finite.

Proposition (Parry)

The set of simple Parry numbers is dense in (1,+∞).
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From (ti )i≥1 ∈A N
β

is built (ci )i≥1 ∈A N
β

, defined by

c1c2c3 . . . :=

{
t1t2t3 . . . if dβ (1) = 0.t1t2 . . . is infinite,
(t1t2 . . . tq−1(tq−1))ω if dβ (1) is finite, = 0.t1t2 . . . tq ,

where ()ω means that the word within () is indefinitely repeated. The
sequence (ci )i≥1 is the unique element of A N

β
which allows to obtain all the

admissible β -expansions of all the elements of [0,1).
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Definition (Conditions of Parry)

A sequence (yi )i≥0 of elements of Aβ (finite or not) is said admissible if

σ
j (y0,y1,y2, . . .) = (yj ,yj+1,yj+2, . . .) <lex (c1, c2, c3, . . .) for all j ≥ 0, (6)

where <lex means lexicographically smaller.

Definition

A sequence (ai )i≥0 ∈A N
β

satisfying (7) is said to be Lyndon (or
self-admissible) :

σ
n(a0,a1,a2, . . .) = (an,an+1,an+2, . . .) <lex (a0,a1,a2, . . .) for all n≥ 1. (7)
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The terminology comes from the introduction of such words by Lyndon, in
honour of his work.

Any admissible representation (xi )i≥1 ∈A N
β

corresponds, by (1), to a real
number x ∈ [0,1) and conversely the greedy β -expansion of x is (xi )i≥1 itself.

For an infinite admissible sequence (yi )i≥0 of elements of Aβ the (strict)
lexicographical inequalities (6) constitute an infinite number of inequalities
which are unusual in number theory.
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In number theory, inequalities are often associated to collections of
half-spaces in euclidean or adelic Geometry of Numbers (Minkowski’s
Theorem, etc).

The conditions of Parry are of totally different nature since they refer to a
reasonable control, order-preserving, of the gappiness (lacunarity) of the
coefficient vectors of the power series.

In the correspondence
[0,1]←→ Sβ ,

the element x = 1 admits the maximal element dβ (1) as counterpart. The
uniqueness of the β -expansion dβ (1) and its property to be Lyndon
characterize the base of numeration β as follows.
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Proposition (Parry)

Let (a0,a1,a2, . . .) be a sequence of non-negative integers where a0 ≥ 1 and
an ≤ a0 for all n ≥ 0. The unique solution β > 1 of

1 =
a0

x
+

a1

x2 +
a2

x3 + . . . (8)

is such that dβ (1) = 0.a0a1a2 . . . if and only if

σ
n(a0,a1,a2, . . .) = (an,an+1,an+2, . . .) <lex (a0,a1,a2, . . .) for all n≥ 1. (9)
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Theorem (VG, ’05)

Let β > 1 be an algebraic number such that dβ (1) is infinite and gappy in the
sense that there exist two infinite sequences {mn}n≥1 and {sn}n≥0 such that

1 = s0 ≤m1 < s1 ≤m2 < s2 ≤ . . .≤mn < sn ≤mn+1 < sn+1 ≤ . . .

with (sn−mn)≥ 2, tmn 6= 0, tsn 6= 0 and ti = 0 if mn < i < sn for all n ≥ 1. Then

limsup
n→+∞

sn

mn
≤ Log(M(β ))

Logβ
(10)
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Varying the base of numeration β in the interval (1,2) :

for all β ∈ (1,2), being an algebraic number or a transcendental number, the
alphabet Aβ of the β -shift is always the same : {0,1}. All the digits of all
β -expansions dβ (1) are zeroes or ones. Parry (’60) has proved that the
relation of order 1 < α < β < 2 is preserved on the corresponding greedy α-
and β - expansions dα (1) and dβ (1) as follows.
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Proposition

Let α > 1 and β > 1. If the Rényi α-expansion of 1 is

dα (1) = 0.t ′1t ′2t ′3 . . . , i .e. 1 =
t ′1
α

+
t ′2
α2 +

t ′3
α3 + . . .

and the Rényi β -expansion of 1 is

dβ (1) = 0.t1t2t3 . . . , i .e. 1 =
t1
β

+
t2
β 2 +

t3
β 3 + . . . ,

then α < β if and only if (t ′1, t
′
2, t
′
3, . . .) <lex (t1, t2, t3, . . .).
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This interval is partitioned by the decreasing sequence (θ
−1
n )n≥2 as

(
1,

1 +
√

5
2

]
=

∞⋃
n=2

[
θ
−1
n+1,θ

−1
n

) ⋃ {
θ
−1
2

}
. (11)

Recall : θn is the unique root of −1 + x + xn in (0,1).
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The condition of minimality on the length of the gaps of zeroes in (ti )i≥1 is only
a function of the interval

[
θ
−1
n+1,θ

−1
n

)
to which β belongs, when β tends to 1.

Theorem

Let n ≥ 2. A real number β ∈ (1, 1+
√

5
2 ] belongs to [θ−1

n+1,θ
−1
n ) if and only if the

Rényi β -expansion of unity is of the form

dβ (1) = 0.10n−110n110n210n3 . . . , (12)

with nk ≥ n−1 for all k ≥ 1.
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Démonstration.

Since d
θ
−1
n+1

(1) = 0.10n−11 and d
θ
−1
n

(1) = 0.10n−21, Proposition 3 implies that

the condition is sufficient. It is also necessary : dβ (1) begins as 0.10n−11 for
all β such that θ

−1
n+1 ≤ β < θ

−1
n . For such βs we write dβ (1) = 0.10n−11u with

digits in the alphabet Aβ = {0,1} common to all βs, that is

u = 1h00n11h10n21h2 . . .

and h0,n1,h1,n2,h2, . . . integers ≥ 0. The self-admissibility lexicographic
condition (9) applied to the sequence (1,0n−1,11+h0 ,0n1 ,1h1 ,0n2 ,1h3 , . . .),
which characterizes uniquely the base of numeration β , readily implies h0 = 0
and hk = 1 and nk ≥ n−1 for all k ≥ 1.
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Definition

Let β ∈ (1, 1+
√

5
2 ] be a real number. The integer n ≥ 3 such that

θ
−1
n ≤ β < θ

−1
n−1 is called the dynamical degree of β , and is denoted by

dyg(β ). By convention we put : dyg( 1+
√

5
2 ) = 2.

The function n = dyg(β ) is locally constant on the interval (1, 1+
√

5
2 ], is

decreasing, takes all values in N\{0,1}, and satisfies :
limβ>1,β→1 dyg(β ) = +∞.
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Let us observe that the equality deg(β ) = dyg(β ) = 2 holds if
β = 1+

√
5

2 , but the equality case is not the case in general.

Definition

A power series ∑
+∞

j=0 ajz j , with aj ∈ {0,1} for all j ≥ 0, is said to be
Lyndon (or self-admissible) if its coefficient vector (ai)i≥0 is Lyndon.

Definition

Let β ∈ (1,(1 +
√

5)/2] be a real number, and dβ (1) = 0.t1t2t3 . . . its Rényi
β -expansion of 1. The power series fβ (z) :=−1 + ∑i≥1 tiz i is called the Parry
Upper function at β .
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Proposition

For 1 < β < (1 +
√

5)/2 any real number, with dβ (1) = 0.t1t2t3 . . ., the Parry
Upper function fβ (z) is such that fβ (1/β ) = 0. It is such that fβ (z) + 1 has
coefficients in the alphabet Aβ = {0,1} and is Lyndon. It takes the form

fβ (z) = Gdyg(β ) + zm1 + zm2 + . . .+ zmq + zmq+1 + . . . (13)

with m1−dyg(β )≥ dyg(β )−1, mq+1−mq ≥ dyg(β )−1 for q ≥ 1. Conversely,
given a power series

−1 + z + zn + zm1 + zm2 + . . .+ zmq + zmq+1 + . . . (14)

with n ≥ 3, m1−n ≥ n−1, mq+1−mq ≥ n−1 for q ≥ 1, then there exists an
unique β ∈ (1,(1 +

√
5)/2) for which n = dyg(β ) with fβ (z) equal to (14).

Moreover, if β , 1 < β < (1 +
√

5)/2, is a reciprocal algebraic integer, the
power series (13) is never a polynomial.

J.-L. Verger-Gaugry (Lecture 4-I)
May 2 - DiophantLehmer 26

/ 38



Completing the lenticular curve

Proposition

The class C is the set of Parry Upper functions fβ (z) for all simple Parry
numbers in (1,(1 +

√
5)/2).

Recall : the set of Parry numbers is dense in (1,+∞).

By the properties of (x ,β )→ Tβ (x),

Proposition

The root functions of fβ (z) valued in |z|< 1 are all continuous, as functions of
β ∈ (1,θ−1

2 )\∪n≥3{θ−1
n }.
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Rewriting trails

Now consider a reciprocal algebraic integer

β ∈ (1,(1 +
√

5)/2).

Two functions characterize the same “object” β :

Pβ (x) minimal polynomial

and
fβ (z).

A priori they have nothing in common. The Parry Upper function has a
lenticulus of zeroes containing z = 1/β . By a rewriting process, in base β , we
show that, in a certain angular sector, approximately (−π/18,+π/18), the
lenticular zeroes should also be zeroes of the minimal polynomial Pβ (x).

The minorant of M(β ) we are looking for arises from this subset of Galois
conjugates of 1/β , (therefore of β ).

J.-L. Verger-Gaugry (Lecture 4-I)
May 2 - DiophantLehmer 28

/ 38



What is a rewriting trail ?

Let us construct the rewriting trail from “Ss” (a section of fβ (z)) to “Pβ ”, at γ
−1
s .

The starting point is the identity 1 = 1, to which we add 0 = Sγs (γ
−1
s ) in the

(rhs) right hand side. Then we define the rewriting trail from the Rényi
γ
−1
s -expansion of 1

1 = 1 + Sγs (γ
−1
s ) = t1γ

−1
s + t2γ

−2
s + . . .+ ts−1γ

−(s−1)
s + tsγ

−s
s (15)

(with t1 = 1, t2 = t3 = . . . = tn−1 = 0, tn = 1, etc) to

−a1γ
−1
s −a2γ

−2
s + . . .−ad−1γ

−(d−1)
s − γ

−d
s = 1−Pβ (γ

−1
s ), (16)
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by “restoring” the digits of 1−Pβ (X ) one after the other, from the left. We
obtain a sequence (A′q(X ))q≥1 of rewriting polynomials involved in this
rewriting trail ; for q ≥ 1, A′q ∈ Z[X ], deg(A′q)≤ q and A′q(0) = 1. At the first
step we add 0 =−(−a1− t1)γ

−1
s S∗γs (γ

−1
s ) ; and we obtain

1 =−a1γ
−1
s

+(−(−a1− t1)t1 + t2)γ
−2
s + (−(−a1− t1)t2 + t3)γ

−3
s + . . .

so that the height of the polynomial

(−(−a1− t1)t1 + t2)X 2 + (−(−a1− t1)t2 + t3)X 3 + . . .

is ≤ H + 2.
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At the second step we add 0 =−(−a2− (−(−a1− t1)t1 + t2))γ
−2
s S∗γs (γ

−1
s ).

Then we obtain
1 =−a1γ

−1
s −a2γ

−2
s

−[(−a2− (−(−a1− t1)t1 + t2))t1 + (−(−a1− t1)t2 + t3)]γ−3
s + . . .

where the height of the polynomial

−[(−a2− (−(−a1− t1)t1 + t2))t1 + (−(−a1− t1)t2 + t3)]X 3 + . . .

is ≤ H + (H + 2) + (H + 2) = 3H + 4. Iterating this process d times we obtain

1 =−a1γ
−1
s −a2γ

−2
s − . . .−ad γ

−d
s

+ polynomial remainder in γ
−1
s .
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Denote by V (γ
−1
s ) this polynomial remainder in γ

−1
s , for some V (X ) ∈ Z[X ],

and X specializing in γ
−1
s . If we denote the upper bound of the height of the

polynomial remainder V (X ), at step q, by λqH + vq , we readily deduce :
vq = 2q , and λq+1 = 2λq + 1, q ≥ 1, with λ1 = 1 ; then λq = 2q−1.

To summarize, the first rewriting polynomials of the sequence (A′q(X ))q≥1
involved in this rewriting trail are

A′1(X ) =−1− (−a1− t1)X ,

A′2(X ) =−1− (−a1− t1)X − (−a2− (−(−a1− t1)t1 + t2))X 2, etc.
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For q ≥ deg(Pβ ), all the coefficients of Pβ are “restored” ; denote by
(hq,j )j=0,1,...,s−1 the s-tuple of integers produced by this rewriting trail, at step
q. It is such that

A′q(γ
−1
s )S∗γs (γ

−1
s ) =−P(γ

−1
s ) + γ

−q−1
s

(s−1

∑
j=0

hq,jγ
−j
s

)
. (17)

Then take q = d . The (lhs) left-and side of (17) is equal to 0. Thus

P(γ
−1
s ) = γ

−d−1
s

(s−1

∑
j=0

hd ,jγ
−j
s

)
=⇒ P(γs) =

s−1

∑
j=0

hd ,jγ
−j−1
s .
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The height of the polynomial

W (X ) :=
s−1

∑
j=0

hd ,jX j+1 is ≤ (2d −1)H + 2d , (18)

and is independent of s ≥Wv .

For any s ≥Wν , let us observe that −Pβ (γ
−1
s ) is > 0, and that the sequence

(γ
−1
s )s is decreasing. By an easy Lemma, the polynomial function x → Pβ (x)

is positive on (0,β−1), vanishes at β−1, and changes its sign for x > β−1, so
that Pβ (γ

−1
s ) < 0. We have : lims→∞ Pβ (γ

−1
s ) = Pβ (β−1) = 0.
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Kala-Vavra Theorem, 2019

to allow Galois conjugation of 1/β we need to control the remaining sums
after the rewriting trails.

This is made possible using Kala-Vara’s Theorem, and the fact that the
irreducible factors C(x) , in the factorization of any P ∈ C , never vanish on the
unit circle.
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Let us recall the definitions. The (δ ,A )-representations for a given δ ∈ C,
|δ |> 1 and a given alphabet A ⊂ C finite, are expressions of the form
∑k≥−L ak δ−k , ak ∈A , for some integer L. We denote

PerA (δ ) := {x ∈ C : x hasaneventuallyperiodic(δ ,A )−representation}.

Theorem (Kala - Vavra)

Let δ ∈ C be an algebraic number of degree d, |δ |> 1, and
ad xd −ad−1xd−1− . . .−a1x−a0 ∈ Z[x ], a0ad 6= 0, be its minimal polynomial.
Suppose that |δ ′| 6= 1 for any conjugate δ ′ of δ , Then there exists a finite
alphabet A ⊂ Z such that

Q(δ ) = PerA (δ ).

J.-L. Verger-Gaugry (Lecture 4-I)
May 2 - DiophantLehmer 36

/ 38



Dobrowolski-type minoration

Denote by amax = 5.87433 . . . the abscissa of the maximum of the function
a→ κ(1,a) :=

1−exp(−π
a )

2exp( π
a )−1 on (0,∞). Let κ := κ(1,amax) = 0.171573 . . . be the

value of the maximum. Let S := 2arcsin(κ/2) = 0.171784 . . .. Denote

Λr µr := exp
(−1

π

∫ S

0
Log

[1 + 2sin( x
2 )−

√
1−12sin( x

2 ) + 4(sin( x
2 ))2

4

]
dx
)

= 1.15411 . . . , a value slightly below Lehmer’s number 1.17628 . . . (19)

Theorem (Dobrowolski type minoration)

Let α be a nonzero reciprocal algebraic integer which is not a root of unity
such that dyg(α)≥ 260, with M(α) < 1.176280 . . .. Then

M(α)≥ Λr µr −Λr µr
S
2π

( 1
Log(dyg(α))

)
(20)
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Comparatively, in 1979, Dobrowolski, using an auxiliary function, obtained the
asymptotic minoration, with n = deg(α),

M(α) > 1 + (1− ε)

(
LogLogn

Logn

)3

, n > n0, (21)

with 1− ε replaced by 1/1200 for n ≥ 2, for an effective version of the
minoration. In the inequality, the constant in the minorant is not any more 1
but 1.15411 . . . and the sign of the n-dependent term is negative, with an
appreciable gain of (Logn)2 in the denominator.

It provides the non-trivial universal minorant of M. But we do not know if
Lehmer’s number 1.176280... is the smallest Mahler measure. It is the
smallest one known.
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