Lecture No 4 : Algebraic Equations from a Class of Integer Polynomials Having Lacunarity Conditions. II.

In this lecture we show that an universal non-trivial minorant of $\mathrm{M}(\alpha)$ for α a reciprocal nonzero real >1 algebraic integer which is not root of unity can be obtained from the class of integer polynomials

$$
\begin{aligned}
& \mathscr{C}:=\left\{-1+x+x^{n}+x^{m_{1}}+x^{m_{2}}+\ldots+x^{m_{s}}:\right. \\
& \left.\quad n \geq 3, m_{1}-n \geq n-1, m_{q}-m_{q-1} \geq n-1 \quad \text { for } 2 \leq q \leq s\right\} .
\end{aligned}
$$

More precisely : from the curve formed by the lenticular roots of the $P s$ of \mathscr{C}.

May 2 - DiophantLē̄mer

Recall : for $P \in \mathscr{C}$, say $P(x)=-1+x+x^{n}+x^{m_{1}}+x^{m_{2}}+\ldots+x^{m_{s}}$, with

$$
\begin{gathered}
n \geq 3, m_{1}-n \geq n-1, m_{q}-m_{q-1} \geq n-1 \text { for } 2 \leq q \leq s, \\
P(x)=A(x) B(x) C(x)
\end{gathered}
$$

with

- $A(x)$ product of cyclotomic polynomials, often trivial (75 \%),
- $B(x)$ product of reciprocal non-cyclotomic irreducible factors, conjectured to be inexistant,
- $C(x)$ irreducible non-reciprocal (unique factor), vanishing at the unique zero of P in $(0,1)$.

Let γ be the unique zero of $P(x)$ in $(0,1): C(\gamma)=0$.
The lenticulus of roots of P is composed of Galois conjugates of C, conjugated with γ, and γ is non-reciprocal. Existence domain : $\mathfrak{R}(z)>1 / 2$.

Example with $n=37$:

$$
\begin{aligned}
& P(x):=\left(-1+x+x^{37}\right)+x^{81}+x^{140}+x^{184}+x^{232}+x^{285}+x^{350}+x^{389} \\
&+x^{450}+x^{514}+x^{550}+x^{590}+x^{649} \\
& \text { a) } \ddots
\end{aligned}
$$

Figure: a) The 37 zeroes of $G_{37}(x)=-1+x+x^{37}$, b) The 649 zeroes of $P(x)=G_{37}(x)+\ldots+x^{649}$. The lenticulus of roots of P is obtained by a very slight deformation of the restriction of the lenticulus of roots of G_{37} to the angular sector $|\arg z|<\pi / 18$, off the unit circle. The other roots (nonlenticular) of P can be found in a narrow annular neighbourhood of $|z|=1$.

Q1 : Is it possible to solve the Problem of Lehmer for the subcollection of \mathscr{C} of the trinomials $\left(-1+x+x^{n}\right)_{n \geq 3}$ using the lenticuli of roots in $\Re>1 / 2$?

Yes + method asymptotic expansions of the roots. Limit Mahler measure = 1.38....

Q2 : Is it possible to solve the Problem of Lehmer for the complete collection \mathscr{C} of polynomials $(P)_{n, m_{1}, m_{2}, \ldots, m_{s}}$ using the curves formed by their lenticuli of roots in $\Re>1 / 2$, or an angular part of them, without taking into account the other roots stuck on the unit circle?

Yes + same method, but useless since all γ s are non-reciprocal. And by
C. Smyth's Theorem we know that

$$
\mathrm{M}(P)=\mathrm{M}(A) \mathrm{M}(B) \mathrm{M}(C)=\mathrm{M}(C)=\mathrm{M}(\gamma) \geq 1.32 \ldots \text { smallest Pisot number }
$$

since the $\gamma \mathrm{s}$ are non-reciprocal.
May 2 - DiōphantLēmer

Q3 : Is it possible to solve the Problem of Lehmer for the set of real reciprocal algebraic integers $\beta>1$ by extending the method and using the above curves formed by the lenticuli of roots of the Ps of \mathscr{C} in $\Re>1 / 2$, or an angular part of them?

Yes + same method + completion of the lenticular curves using Rényi-Parry dynamical systems of numeration + rewriting trails + identification with Kala-Vavra's Theorem.

Lecture 4.II :

- Solution of the Problem of Lehmer, via lenticuli of roots
- Rényi dynamical systems of numeration
- Completion of the lenticular curve, rewriting trails
- Identification of lenticular roots, Theorem of Kala - Vavra
- Dobrowolski type minoration, minoration of the Mahler measure.

0000000

Rényi Dynamical system of numeration - the β-shift, β-expansions

Let $\beta>1$ be a real number and let $\mathscr{A}_{\beta}:=\{0,1,2, \ldots,\lceil\beta-1\rceil\}$. If β is not an integer, then $\lceil\beta-1\rceil=\lfloor\beta\rfloor$.

Let x be a real number in the interval $[0,1]$. A representation in base β (or a β-representation; or a β-ary representation if β is an integer) of x is an infinite word $\left(x_{i}\right)_{i \geq 1}$ of $\mathscr{A}_{\beta}^{\mathbb{N}}$ such that

$$
x=\sum_{i \geq 1} x_{i} \beta^{-i}
$$

The main difference with the case where β is an integer is that x may have several representations.

May 2 - DiophantLē̄mer

A particular β-representation, called the β-expansion, or the greedy β-expansion, and denoted by $d_{\beta}(x)$, of x can be computed either by the greedy algorithm, or equivalently by the β-transformation

$$
T_{\beta}: x \mapsto \beta x \quad(\bmod 1)=\{\beta x\} .
$$

The dynamical system ($[0,1], T_{\beta}$) is called the Rényi-Parry numeration system in base β, the iterates of T_{β} providing the successive digits x_{i} of $d_{\beta}(x)$. Denoting $T_{\beta}^{0}:=\mathrm{Id}, T_{\beta}^{1}:=T_{\beta}, T_{\beta}^{i}:=T_{\beta}\left(T_{\beta}^{i-1}\right)$ for all $i \geq 1$, we have :

$$
d_{\beta}(x)=\left(x_{i}\right)_{i \geq 1} \quad \text { if and only if } \quad x_{i}=\left\lfloor\beta T_{\beta}^{i-1}(x)\right\rfloor
$$

and we write the β-expansion of x as

$$
\begin{equation*}
x=\cdot x_{1} x_{2} x_{3} \ldots \quad \text { instead of } \quad x=\frac{x_{1}}{\beta}+\frac{x_{2}}{\beta^{2}}+\frac{x_{3}}{\beta^{3}}+\ldots \tag{1}
\end{equation*}
$$

The digits are $x_{1}=\lfloor\beta x\rfloor, x_{2}=\lfloor\beta\{\beta x\}\rfloor, x_{3}=\lfloor\beta\{\beta\{\beta x\}\}\rfloor, \ldots$, depend upon β.

The Rényi-Parry numeration dynamical system in base β allows the coding, as a (positional) β-expansion, of any real number x.

Indeed, if $x>0$, there exists $k \in \mathbb{Z}$ such that $\beta^{k} \leq x<\beta^{k+1}$. Hence $1 / \beta \leq x / \beta^{k+1}<1$; thus it is enough to deal with representations and β-expansions of numbers in the interval $[1 / \beta, 1]$. In the case where $k \geq 1$, the β-expansion of x is

$$
x=x_{1} x_{2} \ldots x_{k} \cdot x_{k+1} x_{k+2} \ldots
$$

with $x_{1}=\left\lfloor\beta\left(x / \beta^{k+1}\right)\right\rfloor, x_{2}=\left\lfloor\beta\left\{\beta\left(x / \beta^{k+1}\right)\right\}\right\rfloor, x_{3}=\left\lfloor\beta\left\{\beta\left\{\beta\left(x / \beta^{k+1}\right)\right\}\right\}\right\rfloor$, etc.
If $x<0$, by definition : $d_{\beta}(x)=-d_{\beta}(-x)$.
The part $x_{1} x_{2} \ldots x_{k}$ is called the β-integer part of the β-expansion of x, and the terminant $\cdot x_{k+1} x_{k+2} \ldots$ is called the β-fractional part of $d_{\beta}(x)$.

The set $\mathscr{A}_{\beta}^{\mathbb{N}}$ is endowed with the lexicographical order (not usual in number theory), and the product topology. The one-sided shift $\sigma:\left(x_{i}\right)_{i \geq 1} \mapsto\left(x_{i+1}\right)_{i \geq 1}$ leaves invariant the subset D_{β} of the β-expansions of real numbers in $[0,1)$. The closure of D_{β} in $\mathscr{A}_{\beta}^{\mathbb{N}}$ is called the β-shift, and is denoted by S_{β}. The β-shift is a subshift of $\mathscr{A}_{\beta}^{\mathbb{N}}$, for which

$$
d_{\beta} \circ T_{\beta}=\sigma \circ d_{\beta}
$$

holds on the interval $[0,1]$. In other terms, S_{β} is such that

$$
\begin{equation*}
x \in[0,1] \quad \longleftrightarrow \quad\left(x_{i}\right)_{i \geq 1} \in S_{\beta} \tag{2}
\end{equation*}
$$

is bijective.
This one-to-one correspondence between the totally ordered interval $[0,1]$ and the totally lexicographically ordered β-shift S_{β} is fundamental.

Parry has shown that only one sequence of digits entirely controls the β-shift S_{β}, and that the ordering is preserved when dealing with the greedy β-expansions.

Let us make precise how the usual inequality " $<$ " on the real line is transformed into the inequality "<lex", meaning "lexicographically smaller with all its shifts".

The greatest element of S_{β} : it comes from $x=1$ and is given either by the Rényi β-expansion of 1 , or by a slight modification of it in case of finiteness. Let us make it precise. The greedy β-expansion of 1 is by definition denoted by

$$
\begin{equation*}
d_{\beta}(1)=0 . t_{1} t_{2} t_{3} \ldots \quad \text { and uniquely corresponds to } \quad 1=\sum_{i=1}^{+\infty} t_{i} \beta^{-i}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{1}=\lfloor\beta\rfloor, t_{2}=\lfloor\beta\{\beta\}\rfloor=\left\lfloor\beta T_{\beta}(1)\right\rfloor, t_{3}=\lfloor\beta\{\beta\{\beta\}\}\rfloor=\left\lfloor\beta T_{\beta}^{2}(1)\right\rfloor, \ldots \tag{4}
\end{equation*}
$$

The sequence $\left(t_{i}\right)_{i \geq 1}$ is given by the orbit of one $\left(T_{\beta}^{j}(1)\right)_{j \geq 0}$ by

$$
\begin{equation*}
T_{\beta}^{0}(1)=1, T_{\beta}^{j}(1)=\beta^{j}-t_{1} \beta^{j-1}-t_{2} \beta^{j-2}-\ldots-t_{j} \in \mathbb{Z}[\beta] \cap[0,1] \tag{5}
\end{equation*}
$$

for all $j \geq 1$. The digits t_{i} belong to \mathscr{A}_{β}. We say that $d_{\beta}(1)$ is finite if it ends in infinitely many zeros.

Definition

If $d_{\beta}(1)$ is finite or ultimately periodic (i.e. eventually periodic), then the real number $\beta>1$ is said to be a Parry number. In particular, a Parry number β is said to be simple if $d_{\beta}(1)$ is finite.

Proposition (Parry)

The set of simple Parry numbers is dense in $(1,+\infty)$.

From $\left(t_{i}\right)_{i \geq 1} \in \mathscr{A}_{\beta}^{\mathbb{N}}$ is built $\left(c_{i}\right)_{i \geq 1} \in \mathscr{A}_{\beta}^{\mathbb{N}}$, defined by

$$
c_{1} c_{2} c_{3} \ldots:= \begin{cases}t_{1} t_{2} t_{3} \ldots & \text { if } d_{\beta}(1)=0 . t_{1} t_{2} \ldots \text { is infinite }, \\ \left(t_{1} t_{2} \ldots t_{q-1}\left(t_{q}-1\right)\right)^{\omega} & \text { if } d_{\beta}(1) \text { is finite }=0 . t_{1} t_{2} \ldots t_{q},\end{cases}
$$

where ($)^{\omega}$ means that the word within () is indefinitely repeated. The sequence $\left(c_{i}\right)_{i \geq 1}$ is the unique element of $\mathscr{A}_{\beta}^{\mathbb{N}}$ which allows to obtain all the admissible β-expansions of all the elements of $[0,1)$.

Definition (Conditions of Parry)

A sequence $\left(y_{i}\right)_{i \geq 0}$ of elements of \mathscr{A}_{β} (finite or not) is said admissible if

$$
\begin{equation*}
\sigma^{j}\left(y_{0}, y_{1}, y_{2}, \ldots\right)=\left(y_{j}, y_{j+1}, y_{j+2}, \ldots\right)<_{\text {lex }}\left(c_{1}, c_{2}, c_{3}, \ldots\right) \quad \text { for all } j \geq 0 \tag{6}
\end{equation*}
$$

where $<_{\text {lex }}$ means lexicographically smaller.

Definition

A sequence $\left(a_{i}\right)_{i \geq 0} \in \mathscr{A}_{\beta}^{\mathbb{N}}$ satisfying (7) is said to be Lyndon (or self-admissible) :

$$
\sigma^{n}\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{n}, a_{n+1}, a_{n+2}, \ldots\right)<_{\text {lex }}\left(a_{0}, a_{1}, a_{2}, \ldots\right) \quad \text { for all } n \geq 1 \text {. (7) }
$$

The terminology comes from the introduction of such words by Lyndon, in honour of his work.

Any admissible representation $\left(x_{i}\right)_{i \geq 1} \in \mathscr{A}_{\beta}^{\mathbb{N}}$ corresponds, by (1), to a real number $x \in[0,1)$ and conversely the greedy β-expansion of x is $\left(x_{i}\right)_{i \geq 1}$ itself.

For an infinite admissible sequence $\left(y_{i}\right)_{i \geq 0}$ of elements of \mathscr{A}_{β} the (strict) lexicographical inequalities (6) constitute an infinite number of inequalities which are unusual in number theory.

In number theory, inequalities are often associated to collections of half-spaces in euclidean or adelic Geometry of Numbers (Minkowski's Theorem, etc).

The conditions of Parry are of totally different nature since they refer to a reasonable control, order-preserving, of the gappiness (lacunarity) of the coefficient vectors of the power series.

In the correspondence

$$
[0,1] \longleftrightarrow S_{\beta}
$$

the element $x=1$ admits the maximal element $d_{\beta}(1)$ as counterpart. The uniqueness of the β-expansion $d_{\beta}(1)$ and its property to be Lyndon characterize the base of numeration β as follows.

Proposition (Parry)

Let $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ be a sequence of non-negative integers where $a_{0} \geq 1$ and $a_{n} \leq a_{0}$ for all $n \geq 0$. The unique solution $\beta>1$ of

$$
\begin{equation*}
1=\frac{a_{0}}{x}+\frac{a_{1}}{x^{2}}+\frac{a_{2}}{x^{3}}+\ldots \tag{8}
\end{equation*}
$$

is such that $d_{\beta}(1)=0 . a_{0} a_{1} a_{2} \ldots$ if and only if

$$
\begin{equation*}
\sigma^{n}\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{n}, a_{n+1}, a_{n+2}, \ldots\right)<_{\text {lex }}\left(a_{0}, a_{1}, a_{2}, \ldots\right) \quad \text { for all } n \geq 1 \tag{9}
\end{equation*}
$$

Theorem (VG, '05)

Let $\beta>1$ be an algebraic number such that $d_{\beta}(1)$ is infinite and gappy in the sense that there exist two infinite sequences $\left\{m_{n}\right\}_{n \geq 1}$ and $\left\{s_{n}\right\}_{n \geq 0}$ such that

$$
1=s_{0} \leq m_{1}<s_{1} \leq m_{2}<s_{2} \leq \ldots \leq m_{n}<s_{n} \leq m_{n+1}<s_{n+1} \leq \ldots
$$

with $\left(s_{n}-m_{n}\right) \geq 2, t_{m_{n}} \neq 0, t_{s_{n}} \neq 0$ and $t_{i}=0$ if $m_{n}<i<s_{n}$ for all $n \geq 1$. Then

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \frac{s_{n}}{m_{n}} \leq \frac{\log (\mathrm{M}(\beta))}{\log \beta} \tag{10}
\end{equation*}
$$

May 2 - DiophantLēmer

Varying the base of numeration β in the interval $(1,2)$:
for all $\beta \in(1,2)$, being an algebraic number or a transcendental number, the alphabet \mathscr{A}_{β} of the β-shift is always the same : $\{0,1\}$. All the digits of all β-expansions $d_{\beta}(1)$ are zeroes or ones. Parry ('60) has proved that the relation of order $1<\alpha<\beta<2$ is preserved on the corresponding greedy α and β - expansions $d_{\alpha}(1)$ and $d_{\beta}(1)$ as follows.

Proposition

Let $\alpha>1$ and $\beta>1$. If the Rényi α-expansion of 1 is

$$
d_{\alpha}(1)=0 . t_{1}^{\prime} t_{2}^{\prime} t_{3}^{\prime} \ldots, \quad \text { i.e. } \quad 1=\frac{t_{1}^{\prime}}{\alpha}+\frac{t_{2}^{\prime}}{\alpha^{2}}+\frac{t_{3}^{\prime}}{\alpha^{3}}+\ldots
$$

and the Rényi β-expansion of 1 is

$$
d_{\beta}(1)=0 . t_{1} t_{2} t_{3} \ldots, \quad \text { i.e. } \quad 1=\frac{t_{1}}{\beta}+\frac{t_{2}}{\beta^{2}}+\frac{t_{3}}{\beta^{3}}+\ldots,
$$

then $\alpha<\beta$ if and only if $\left(t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}, \ldots\right)<_{l e x}\left(t_{1}, t_{2}, t_{3}, \ldots\right)$.

This interval is partitioned by the decreasing sequence $\left(\theta_{n}^{-1}\right)_{n \geq 2}$ as

$$
\begin{equation*}
\left(1, \frac{1+\sqrt{5}}{2}\right]=\bigcup_{n=2}^{\infty}\left[\theta_{n+1}^{-1}, \theta_{n}^{-1}\right) \bigcup\left\{\theta_{2}^{-1}\right\} \tag{11}
\end{equation*}
$$

Recall : θ_{n} is the unique root of $-1+x+x^{n}$ in $(0,1)$.

The condition of minimality on the length of the gaps of zeroes in $\left(t_{i}\right)_{i \geq 1}$ is only a function of the interval $\left[\theta_{n+1}^{-1}, \theta_{n}^{-1}\right)$ to which β belongs, when β tends to 1 .

Theorem

Let $n \geq 2$. A real number $\beta \in\left(1, \frac{1+\sqrt{5}}{2}\right]$ belongs to $\left[\theta_{n+1}^{-1}, \theta_{n}^{-1}\right)$ if and only if the Rényi β-expansion of unity is of the form

$$
\begin{equation*}
d_{\beta}(1)=0.10^{n-1} 10^{n_{1}} 10^{n_{2}} 10^{n_{3}} \ldots \tag{12}
\end{equation*}
$$

with $n_{k} \geq n-1$ for all $k \geq 1$.

Démonstration.

Since $d_{\theta_{n+1}^{-1}}(1)=0.10^{n-1} 1$ and $d_{\theta_{n}^{-1}}(1)=0.10^{n-2} 1$, Proposition 3 implies that the condition is sufficient. It is also necessary : $d_{\beta}(1)$ begins as $0.10^{n-1} 1$ for all β such that $\theta_{n+1}^{-1} \leq \beta<\theta_{n}^{-1}$. For such β s we write $d_{\beta}(1)=0.10^{n-1} 1 u$ with digits in the alphabet $\mathscr{A}_{\beta}=\{0,1\}$ common to all $\beta \mathrm{s}$, that is

$$
u=1^{n_{0}} 0^{n_{1}} 1^{h_{1}} 0^{n_{2}} 1^{n_{2}} \ldots
$$

and $h_{0}, n_{1}, h_{1}, n_{2}, h_{2}, \ldots$ integers ≥ 0. The self-admissibility lexicographic condition (9) applied to the sequence ($\left.1,0^{n-1}, 1^{1+h_{0}}, 0^{n_{1}}, 1^{n_{1}}, 0^{n_{2}}, 1^{h_{3}}, \ldots\right)$, which characterizes uniquely the base of numeration β, readily implies $h_{0}=0$ and $h_{k}=1$ and $n_{k} \geq n-1$ for all $k \geq 1$.

Definition

Let $\beta \in\left(1, \frac{1+\sqrt{5}}{2}\right]$ be a real number. The integer $n \geq 3$ such that $\theta_{n}^{-1} \leq \beta<\theta_{n-1}^{-1}$ is called the dynamical degree of β, and is denoted by $\operatorname{dyg}(\beta)$. By convention we put : $\operatorname{dyg}\left(\frac{1+\sqrt{5}}{2}\right)=2$.

The function $n=\operatorname{dyg}(\beta)$ is locally constant on the interval $\left(1, \frac{1+\sqrt{5}}{2}\right]$, is decreasing, takes all values in $\mathbb{N} \backslash\{0,1\}$, and satisfies :
$\lim _{\beta>1, \beta \rightarrow 1} \operatorname{dyg}(\beta)=+\infty$.

Let us observe that the equality $\operatorname{deg}(\beta)=\operatorname{dyg}(\beta)=2$ holds if $\beta=\frac{1+\sqrt{5}}{2}$, but the equality case is not the case in general.

Definition
A power series $\sum_{j=0}^{+\infty} a_{j} z^{j}$, with $a_{j} \in\{0,1\}$ for all $j \geq 0$, is said to be Lyndon (or self-admissible) if its coefficient vector $\left(a_{i}\right)_{i \geq 0}$ is Lyndon.

Definition

Let $\beta \in(1,(1+\sqrt{5}) / 2]$ be a real number, and $d_{\beta}(1)=0 . t_{1} t_{2} t_{3} \ldots$ its Rényi β-expansion of 1 . The power series $f_{\beta}(z):=-1+\sum_{i \geq 1} t_{i} z^{i}$ is called the Parry Upper function at β.

Proposition

For $1<\beta<(1+\sqrt{5}) / 2$ any real number, with $d_{\beta}(1)=0 . t_{1} t_{2} t_{3} \ldots$, the Parry Upper function $f_{\beta}(z)$ is such that $f_{\beta}(1 / \beta)=0$. It is such that $f_{\beta}(z)+1$ has coefficients in the alphabet $\mathscr{A}_{\beta}=\{0,1\}$ and is Lyndon. It takes the form

$$
\begin{equation*}
f_{\beta}(z)=G_{\mathrm{dyg}(\beta)}+z^{m_{1}}+z^{m_{2}}+\ldots+z^{m_{q}}+z^{m_{q+1}}+\ldots \tag{13}
\end{equation*}
$$

with $m_{1}-\operatorname{dyg}(\beta) \geq \operatorname{dyg}(\beta)-1, m_{q+1}-m_{q} \geq \operatorname{dyg}(\beta)-1$ for $q \geq 1$. Conversely, given a power series

$$
\begin{equation*}
-1+z+z^{n}+z^{m_{1}}+z^{m_{2}}+\ldots+z^{m_{q}}+z^{m_{q+1}}+\ldots \tag{14}
\end{equation*}
$$

with $n \geq 3, m_{1}-n \geq n-1, m_{q+1}-m_{q} \geq n-1$ for $q \geq 1$, then there exists an unique $\beta \in(1,(1+\sqrt{5}) / 2)$ for which $n=\operatorname{dyg}(\beta)$ with $f_{\beta}(z)$ equal to (14).

Moreover, if $\beta, 1<\beta<(1+\sqrt{5}) / 2$, is a reciprocal algebraic integer, the power series (13) is never a polynomial.

Completing the lenticular curve

Proposition

The class \mathscr{C} is the set of Parry Upper functions $f_{\beta}(z)$ for all simple Parry numbers in $(1,(1+\sqrt{5}) / 2)$.

Recall : the set of Parry numbers is dense in $(1,+\infty)$.
By the properties of $(x, \beta) \rightarrow T_{\beta}(x)$,

Proposition
The root functions of $f_{\beta}(z)$ valued in $|z|<1$ are all continuous, as functions of $\beta \in\left(1, \theta_{2}^{-1}\right) \backslash \cup_{n \geq 3}\left\{\theta_{n}^{-1}\right\}$.

Rewriting trails

Now consider a reciprocal algebraic integer

$$
\beta \in(1,(1+\sqrt{5}) / 2) .
$$

Two functions characterize the same "object" β :

$$
P_{\beta}(x) \quad \text { minimal polynomial }
$$

and

$$
f_{\beta}(z)
$$

A priori they have nothing in common. The Parry Upper function has a lenticulus of zeroes containing $z=1 / \beta$. By a rewriting process, in base β, we show that, in a certain angular sector, approximately $(-\pi / 18,+\pi / 18)$, the lenticular zeroes should also be zeroes of the minimal polynomial $P_{\beta}(x)$.

The minorant of $\mathrm{M}(\beta)$ we are looking for arises from this subset of Galois conjugates of $1 / \beta$, (therefore of β).

What is a rewriting trail?

Let us construct the rewriting trail from " S_{s} " (a section of $f_{\beta}(z)$) to " P_{β} ", at γ_{s}^{-1}.
The starting point is the identity $1=1$, to which we add $0=S_{\gamma_{s}}\left(\gamma_{s}^{-1}\right)$ in the (rhs) right hand side. Then we define the rewriting trail from the Rényi γ_{s}^{-1}-expansion of 1

$$
\begin{equation*}
1=1+S_{\gamma_{s}}\left(\gamma_{s}^{-1}\right)=t_{1} \gamma_{s}^{-1}+t_{2} \gamma_{s}^{-2}+\ldots+t_{s-1} \gamma_{s}^{-(s-1)}+t_{s} \gamma_{s}^{-s} \tag{15}
\end{equation*}
$$

(with $t_{1}=1, t_{2}=t_{3}=\ldots=t_{n-1}=0, t_{n}=1$, etc) to

$$
\begin{equation*}
-a_{1} \gamma_{s}^{-1}-a_{2} \gamma_{s}^{-2}+\ldots-a_{d-1} \gamma_{s}^{-(d-1)}-\gamma_{s}^{-d}=1-P_{\beta}\left(\gamma_{s}^{-1}\right), \tag{16}
\end{equation*}
$$

by "restoring" the digits of $1-P_{\beta}(X)$ one after the other, from the left. We obtain a sequence $\left(A_{q}^{\prime}(X)\right)_{q \geq 1}$ of rewriting polynomials involved in this rewriting trail ; for $q \geq 1, A_{q}^{\prime} \in \mathbb{Z}[X], \operatorname{deg}\left(A_{q}^{\prime}\right) \leq q$ and $A_{q}^{\prime}(0)=1$. At the first step we add $0=-\left(-a_{1}-t_{1}\right) \gamma_{s}^{-1} S_{\gamma_{s}}^{*}\left(\gamma_{s}^{-1}\right)$; and we obtain

$$
\begin{gathered}
1=-a_{1} \gamma_{s}^{-1} \\
+\left(-\left(-a_{1}-t_{1}\right) t_{1}+t_{2}\right) \gamma_{s}^{-2}+\left(-\left(-a_{1}-t_{1}\right) t_{2}+t_{3}\right) \gamma_{s}^{-3}+\ldots
\end{gathered}
$$

so that the height of the polynomial

$$
\left(-\left(-a_{1}-t_{1}\right) t_{1}+t_{2}\right) X^{2}+\left(-\left(-a_{1}-t_{1}\right) t_{2}+t_{3}\right) X^{3}+\ldots
$$

is $\leq H+2$.

At the second step we add $0=-\left(-a_{2}-\left(-\left(-a_{1}-t_{1}\right) t_{1}+t_{2}\right)\right) \gamma_{s}^{-2} S_{\gamma_{s}}^{*}\left(\gamma_{s}^{-1}\right)$. Then we obtain

$$
\begin{gathered}
1=-a_{1} \gamma_{s}^{-1}-a_{2} \gamma_{s}^{-2} \\
-\left[\left(-a_{2}-\left(-\left(-a_{1}-t_{1}\right) t_{1}+t_{2}\right)\right) t_{1}+\left(-\left(-a_{1}-t_{1}\right) t_{2}+t_{3}\right)\right] \gamma_{s}^{-3}+\ldots
\end{gathered}
$$

where the height of the polynomial

$$
-\left[\left(-a_{2}-\left(-\left(-a_{1}-t_{1}\right) t_{1}+t_{2}\right)\right) t_{1}+\left(-\left(-a_{1}-t_{1}\right) t_{2}+t_{3}\right)\right] X^{3}+\ldots
$$

is $\leq H+(H+2)+(H+2)=3 H+4$. Iterating this process d times we obtain

$$
1=-a_{1} \gamma_{s}^{-1}-a_{2} \gamma_{s}^{-2}-\ldots-a_{d} \gamma_{s}^{-d}
$$

+ polynomial remainder in $\gamma_{s}{ }^{-1}$.

Denote by $V\left(\gamma_{s}^{-1}\right)$ this polynomial remainder in γ_{s}^{-1}, for some $V(X) \in \mathbb{Z}[X]$, and X specializing in γ_{s}^{-1}. If we denote the upper bound of the height of the polynomial remainder $V(X)$, at step q, by $\lambda_{q} H+v_{q}$, we readily deduce :
$v_{q}=2^{q}$, and $\lambda_{q+1}=2 \lambda_{q}+1, q \geq 1$, with $\lambda_{1}=1$; then $\lambda_{q}=2^{q}-1$.

To summarize, the first rewriting polynomials of the sequence $\left(A_{q}^{\prime}(X)\right)_{q \geq 1}$ involved in this rewriting trail are

$$
A_{1}^{\prime}(X)=-1-\left(-a_{1}-t_{1}\right) X,
$$

$$
A_{2}^{\prime}(X)=-1-\left(-a_{1}-t_{1}\right) X-\left(-a_{2}-\left(-\left(-a_{1}-t_{1}\right) t_{1}+t_{2}\right)\right) X^{2}, \quad \text { etc. }
$$

For $q \geq \operatorname{deg}\left(P_{\beta}\right)$, all the coefficients of P_{β} are "restored"; denote by $\left(h_{q, j}\right)_{j=0,1, \ldots, s-1}$ the s-tuple of integers produced by this rewriting trail, at step q. It is such that

$$
\begin{equation*}
A_{q}^{\prime}\left(\gamma_{s}^{-1}\right) S_{\gamma_{s}}^{*}\left(\gamma_{s}^{-1}\right)=-P\left(\gamma_{s}^{-1}\right)+\gamma_{s}^{-q-1}\left(\sum_{j=0}^{s-1} h_{q, j} \gamma_{s}^{-j}\right) \tag{17}
\end{equation*}
$$

Then take $q=d$. The (lhs) left-and side of (17) is equal to 0 . Thus

$$
P\left(\gamma_{s}^{-1}\right)=\gamma_{s}^{-d-1}\left(\sum_{j=0}^{s-1} h_{d, j} \gamma_{s}^{-j}\right) \quad \Longrightarrow \quad P\left(\gamma_{s}\right)=\sum_{j=0}^{s-1} h_{d, j} \gamma_{s}^{-j-1} .
$$

The height of the polynomial

$$
\begin{equation*}
W(X):=\sum_{j=0}^{s-1} h_{d, j} X^{j+1} \quad \text { is } \quad \leq\left(2^{d}-1\right) H+2^{d} \tag{18}
\end{equation*}
$$

and is independent of $s \geq W_{v}$.
For any $s \geq W_{v}$, let us observe that $-P_{\beta}\left(\gamma_{s}^{-1}\right)$ is >0, and that the sequence $\left(\gamma_{s}^{-1}\right)_{s}$ is decreasing. By an easy Lemma, the polynomial function $x \rightarrow P_{\beta}(x)$ is positive on $\left(0, \beta^{-1}\right)$, vanishes at β^{-1}, and changes its sign for $x>\beta^{-1}$, so that $P_{\beta}\left(\gamma_{s}^{-1}\right)<0$. We have : $\lim _{s \rightarrow \infty} P_{\beta}\left(\gamma_{s}^{-1}\right)=P_{\beta}\left(\beta^{-1}\right)=0$.

Kala-Vavra Theorem, 2019

to allow Galois conjugation of $1 / \beta$ we need to control the remaining sums after the rewriting trails.

This is made possible using Kala-Vara's Theorem, and the fact that the irreducible factors $C(x)$, in the factorization of any $P \in \mathscr{C}$, never vanish on the unit circle.

Let us recall the definitions. The (δ, \mathscr{A})-representations for a given $\delta \in \mathbb{C}$, $|\delta|>1$ and a given alphabet $\mathscr{A} \subset \mathbb{C}$ finite, are expressions of the form $\sum_{k \geq-L} a_{k} \delta^{-k}, a_{k} \in \mathscr{A}$, for some integer L. We denote

$$
\operatorname{Per}_{\mathscr{A}}(\delta):=\{x \in \mathbb{C}: x \text { has an eventually periodic }(\delta, \mathscr{A}) \text {-representation }\} .
$$

Theorem (Kala - Vavra)

Let $\delta \in \mathbb{C}$ be an algebraic number of degree $d,|\delta|>1$, and $a_{d} x^{d}-a_{d-1} x^{d-1}-\ldots-a_{1} x-a_{0} \in \mathbb{Z}[x], a_{0} a_{d} \neq 0$, be its minimal polynomial. Suppose that $\left|\delta^{\prime}\right| \neq 1$ for any conjugate δ^{\prime} of δ, Then there exists a finite alphabet $\mathscr{A} \subset \mathbb{Z}$ such that

$$
\mathbb{Q}(\delta)=\operatorname{Per}_{\mathscr{A}}(\delta) .
$$

Dobrowolski-type minoration

Denote by $a_{\max }=5.87433 \ldots$ the abscissa of the maximum of the function $a \rightarrow \kappa(1, a):=\frac{1-\exp \left(\frac{-\pi}{a}\right)}{2 \exp \left(\frac{\pi}{a}\right)-1}$ on $(0, \infty)$. Let $\kappa:=\kappa\left(1, a_{\max }\right)=0.171573 \ldots$ be the value of the maximum. Let $S:=2 \arcsin (\kappa / 2)=0.171784 \ldots$. Denote

$$
\begin{equation*}
\Lambda_{r} \mu_{r}:=\exp \left(\frac{-1}{\pi} \int_{0}^{S} \log \left[\frac{1+2 \sin \left(\frac{x}{2}\right)-\sqrt{1-12 \sin \left(\frac{x}{2}\right)+4\left(\sin \left(\frac{x}{2}\right)\right)^{2}}}{4}\right] d x\right) \tag{19}
\end{equation*}
$$

$=1.15411 \ldots, \quad$ a value slightly below Lehmer's number $1.17628 \ldots$

Theorem (Dobrowolski type minoration)

Let α be a nonzero reciprocal algebraic integer which is not a root of unity such that $\operatorname{dyg}(\alpha) \geq 260$, with $\mathrm{M}(\alpha)<1.176280$.... Then

$$
\begin{equation*}
\mathrm{M}(\alpha) \geq \Lambda_{r} \mu_{r}-\Lambda_{r} \mu_{r} \frac{S}{2 \pi}\left(\frac{1}{\log (\operatorname{dyg}(\alpha))}\right) \tag{20}
\end{equation*}
$$

Comparatively, in 1979, Dobrowolski, using an auxiliary function, obtained the asymptotic minoration, with $n=\operatorname{deg}(\alpha)$,

$$
\begin{equation*}
\mathrm{M}(\alpha)>1+(1-\varepsilon)\left(\frac{\log \log n}{\log n}\right)^{3}, \quad n>n_{0} \tag{21}
\end{equation*}
$$

with $1-\varepsilon$ replaced by $1 / 1200$ for $n \geq 2$, for an effective version of the minoration. In the inequality, the constant in the minorant is not any more 1 but $1.15411 \ldots$ and the sign of the n-dependent term is negative, with an appreciable gain of $(\log n)^{2}$ in the denominator.

It provides the non-trivial universal minorant of M. But we do not know if Lehmer's number 1.176280... is the smallest Mahler measure. It is the smallest one known.

