Lecture No 4 : Algebraic Equations from a Class of Integer Polynomials Having
Lacunarity Conditions. II.

In this lecture we show that an universal non-trivial minorant of
M(a) for a a reciprocal nonzero real > 1 algebraic integer which is not
root of unity can be obtained from the class of integer polynomials

C={-1+x+x"+x™+xT2 . +xTs:

n>3,m-n>n—1,mg—mg_4>n-1 for 2<g<s}.

More precisely : from the curve formed by the lenticular roots of the Ps
of €.
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Recall : for P ¢, say P(x) = —1+x+x"+x™ + xM2 4 ...+ x™s, with
n>3,m-n>n-1mg—mg_4>n-1 for 2<g<s,

P(x) = A(x)B(x)C(x)
with
- A(x) product of cyclotomic polynomials, often trivial (75 %),

- B(x) product of reciprocal non-cyclotomic irreducible factors,
conjectured to be inexistant,

- C(x) irreducible non-reciprocal (unique factor), vanishing at the unique
zero of Pin (0,1).
Let y be the unique zero of P(x) in (0,1) : C(y) =0.

The lenticulus of roots of P is composed of Galois conjugates of C,
conjugated with y, and y is non-reciprocal. Existence domain : ®(z) > 1/2.
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Example with n=237:

P(X) — (_1 +X+X37) +X81 +X14O —|-X184+X232 +X285 +X350+X389
+X450 +X514+X550+X590 JrX649

a)

FIGURE: a) The 37 zeroes of Gs7(x) = —1+x+x%7, b) The 649 zeroes of
P(x) = Gz7(x) +...+ x5, The lenticulus of roots of P is obtained by a very
slight deformation of the restriction of the lenticulus of roots of Gz7 to the
angular sector |arg z| < /18, off the unit circle. The other roots
(nonlenticular) of P can be found in a narrow annular neighbourhood of
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Q1 : Is it possible to solve the Problem of Lehmer for the subcollection of € of
the trinomials (—1+ x + x) >3 using the lenticuli of roots in R > 1/27?

Yes + method asymptotic expansions of the roots. Limit Mahler measure
=1.38....

Q2 : Is it possible to solve the Problem of Lehmer for the complete collection
¢ of polynomials (P)n,m, m,,...ms USiNg the curves formed by their lenticuli of
roots in R > 1/2, or an angular part of them, without taking into account the
other roots stuck on the unit circle ?

Yes + same method, but useless since all ys are non-reciprocal. And by
C. Smyth’s Theorem we know that

M(P) =M(AM(B)M(C) = M(C) =M(y) > 1.32...smallest Pisot number
since the ys are non-reciprocal.
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Q3 : Is it possible to solve the Problem of Lehmer for the set of real
reciprocal algebraic integers 8 > 1 by extending the method and
using the above curves formed by the lenticuli of roots of the Ps of € in
R > 1/2, or an angular part of them ?

Yes + same method + completion of the lenticular curves using
Rényi-Parry dynamical systems of numeration + rewriting trails +
identification with Kala-Vavra’s Theorem.
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Lecture 4.11 :

- Solution of the Problem of Lehmer, via lenticuli of roots

- Rényi dynamical systems of numeration

- Completion of the lenticular curve, rewriting trails

- Identification of lenticular roots, Theorem of Kala - Vavra

- Dobrowolski type minoration, minoration of the Mahler measure.

0000000
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Rényi Dynamical system of numeration - the -shift, f-expansions

Let B > 1 be a real number and let @7 := {0,1,2,...,[B—1]}. If B is notan
integer, then [ —1] = [B].

Let x be a real number in the interval [0, 1]. A representation in base 8 (or a
B-representation ; or a B-ary representation if § is an integer) of x is an
infinite word (x;);>1 of dﬁN such that

x=Y xp~'.
i1

The main difference with the case where 8 is an integer is that x may have
several representations.
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A particular B-representation, called the B-expansion, or the greedy
B-expansion, and denoted by dg(x), of x can be computed either by the
greedy algorithm, or equivalently by the -transformation

Tg: x — Bx (mod1)={Bx}.

The dynamical system ([0,1], Tg) is called the Rényi-Parry numeration
system in base f3, the iterates of Ty providing the successive digits x; of

dg(x). Denoting Tg =1d, Té = T, Tlg = TB(TI’;’1) for all i > 1, we have :
ds(x) = (%)i=1  ifandonlyif X =[BT (x))
and we write the $-expansion of x as

:%‘JF%JF%JF.... (1)

The digits are x; = |Bx], xo = | B{Bx}], x3 = |B{B{Bx}}], ... , depend upon
B.
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X = -X{XoX3... instead of X
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The Rényi-Parry numeration dynamical system in base 8 allows the coding,
as a (positional) B-expansion, of any real number x.

Indeed, if x > 0, there exists k € Z such that ¥ < x < B*¥*1. Hence
1/B < x/B¥*1 < 1; thus it is enough to deal with representations and
B-expansions of numbers in the interval [1/8,1]. In the case where k > 1, the
B-expansion of x is

X = X1 X2... Xk X1 Xk42---

with xq = [B(x/B*™) ], xo = [B{B(x/B* ")}, xs = |B{B{B(x/B 1)}}], etc.
If x < 0, by definition : dg(x) = —dg(—x).

The part x1 x»... Xk is called the B-integer part of the $-expansion of x, and
the terminant Xk, 1 Xx;2 . .. is called the B-fractional part of d(x).
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The set MBN is endowed with the lexicographical order (not usual in number
theory), and the product topology. The one-sided shift o : (X;)j>1 — (Xj11)i>1
leaves invariant the subset Dy of the B-expansions of real numbers in [0, 1).
The closure of Dg in szﬁN is called the B-shift, and is denoted by Sg. The
B-shift is a subshift of %ﬁN, for which

dB o Tﬁ =00 dﬁ
holds on the interval [0,1]. In other terms, Sg is such that
x €[0,1] — (Xi)i=1 € Sg (2)
is bijective.

This one-to-one correspondence between the totally ordered interval
[0,1] and the totally lexicographically ordered -shift Sy is fundamental.
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Parry has shown that only one sequence of digits entirely controls the B-shift
Sg, and that the ordering is preserved when dealing with the greedy
B-expansions.

Let us make precise how the usual inequality “<” on the real line is
transformed into the inequality “</e,”, meaning “lexicographically smaller with
all its shifts”.

The greatest element of Sg : it comes from x =1 and is given either by the
Rényi B-expansion of 1, or by a slight modification of it in case of finiteness.

Let us make it precise. The greedy -expansion of 1 is by definition denoted
by

o
dg(1) =0.t1tot3... and uniquely corresponds to 1= Z tB~", (3)
i=1

where
t=1Bl,t=B{B} = BTs(N)| . ts=B{B{BI} = IBTEMD,... (4)
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The sequence (1;);>1 is given by the orbit of one (Té(1))j20 by

TS =1, Th() =B/~ tp/ ' — B/ 2~ ...~ Z[B]N[01]  (5)

for all j > 1. The digits #; belong to .«73. We say that dg(1) is finite if it ends in
infinitely many zeros.

Definition

If dg(1) is finite or ultimately periodic (i.e. eventually periodic), then the real
number § > 1 is said to be a Parry number. In particular, a Parry number § is
said to be simple if dg(1) is finite.

Proposition (Parry)

The set of simple Parry numbers is dense in (1,+<).
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From (t)i>1 € dﬁN is built (¢;)i>1 € dﬁN, defined by

oot | tibty... if d,;(1):0.t1t2... is infinite,
19257 (Wb tga(tg—1))® i dg(1) isfinite, =0.tit... 1,

where ()® means that the word within () is indefinitely repeated. The
sequence (¢;);>1 is the unique element of dﬁN which allows to obtain all the
admissible -expansions of all the elements of [0,1).
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Definition (Conditions of Parry)
A sequence (y;);>o of elements of <73 (finite or not) is said admissible if

(Yo, ¥1,¥2,--) = (Vs Yjst: Vjros---) <iex (C1,Co,C3,...) forallj>0, (6)

where < means lexicographically smaller.

Definition
A sequence (a;)i>o € ,QfﬁN satisfying (7) is said to be Lyndon (or
self-admissible) :

c"(ap,ar,az,...) = (@n,@n+1,8ns2,---) <iex (@0,a1,82,...)  foralln>1. (7)

v
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The terminology comes from the introduction of such words by Lyndon, in
honour of his work.

Any admissible representation (x;);j>1 € ,Q%BN corresponds, by (1), to a real
number x € [0,1) and conversely the greedy B-expansion of x is (X;);>1 itself.

For an infinite admissible sequence (y;);>o of elements of <75 the (strict)
lexicographical inequalities (6) constitute an infinite number of inequalities
which are unusual in number theory.
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In number theory, inequalities are often associated to collections of
half-spaces in euclidean or adelic Geometry of Numbers (Minkowski’s
Theorem, efc).

The conditions of Parry are of totally different nature since they refer to a
reasonable control, order-preserving, of the gappiness (lacunarity) of the
coefficient vectors of the power series.

In the correspondence

[0,1] +— Sﬁ,
the element x = 1 admits the maximal element dg(1) as counterpart. The
uniqueness of the B-expansion dg(1) and its property to be Lyndon
characterize the base of numeration 8 as follows.
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Proposition (Parry)

Let (ap,a1,a0,...) be a sequence of non-negative integers where ag > 1 and
an < ag for all n > 0. The unique solution B > 1 of

1==+S+=+... (8)

is such that dg(1) = 0.apasaz ... if and only if

o"(ap,ar, az,...) = (an,an11,8n12,---) <iex (0, @1,82,...)  foralln>1. (9)

v
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Theorem (VG, '05)

Let B > 1 be an algebraic number such that dg (1) is infinite and gappy in the
sense that there exist two infinite sequences {mu}n>1 and {sp},>0 such that

1=5<mM <5 <M<$H<...<Mp<8Sp<Mpy1<Spp1 <...
with (sp—mp) > 2, tm, #0, &, #0and ;=0 if mp < i < sy foralln>1. Then

imsup 57 < Lo (M(B))

10
n—s4e Mp LOgB ( )

v
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Varying the base of numeration B in the interval (1,2) :

for all B € (1,2), being an algebraic number or a transcendental number, the
alphabet «73 of the B-shift is always the same : {0,1}. All the digits of all
B-expansions dg(1) are zeroes or ones. Parry ('60) has proved that the
relation of order 1 < o < B < 2 is preserved on the corresponding greedy o-
and - expansions dy(1) and dg(1) as follows.
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Proposition

Letoo > 1 and B > 1. If the Rényi a-expansion of 1 is
de(1) =0.t1 1585, ie. 1= 2+54 4.
and the Rényi B-expansion of 1 is

then oo < B ifand only if (]85, 1;,...) <jex (11,2, 83,...).
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This interval is partitioned by the decreasing sequence (6, )n>2 as

DB = Ulete) U (s} (1)

(1,

Recall : 6, is the unique root of —1 + x4+ x"in (0,1).

May 2 - DiophantLehme/r38

J.-L. Verger-Gaugry (Lecture 4-1)



The condition of minimality on the length of the gaps of zeroes in ({;);>1 is only

a function of the interval [ ,,H,e ) to which 8 belongs, when 3 tends to 1.
Theorem

Letn>2. Areal numberp € (1, 1+‘f] belongs to [0
Rényi B -expansion of unity is of the form

i1+ 6 ) if and only if the

ds(1)=0.10""110"10"210™ ..., (12)

withnge > n—1 forallk > 1.
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Démonstration.
Since deq1 (1)=0.10"""1 and d, (1) = 0.10"~21, Proposition 3 implies that
n+ n

the condition is sufficient. It is also necessary : dg(1) begins as 0.10"'1 for

all B such that 6, < B < 6,". For such Bs we write dg(1) = 0.10"""1u with
digits in the alphabet <73 = {0,1} common to all Bs, that is

u=1Mmom 1Mo

and hg,ny,hy,no, ho, ... integers > 0. The self-admissibility lexicographic
condition (9) applied to the sequence (1,07~ ",11+M 0™ 1M o2 1hs ),
which characterizes uniquely the base of numeration 3, readily implies hg =0
and hy=1and ny > n—1forall k> 1. O

v
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Definition

Let B € (1, %] be a real number. The integer n > 3 such that

6, <B <8, is called the dynamical degree of B, and is denoted by
dyg(B). By convention we put : dyg(y/8) = 2.

The function n = dyg(B) is locally constant on the interval (1, ‘*Tﬁ], is
decreasing, takes all values in N\ {0, 1}, and satisfies :

limp~1 51 dyg(B) = +eo.
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Let us observe that the equality deg() = dyg(p) = 2 holds if
B = ”T\G but the equality case is not the case in general.

Definition

A power series ):/:5 ajz/, with g; € {0,1} for all j > 0, is said to be
Lyndon (or self-admissible) if its coefficient vector (a;);>o is Lyndon.

Definition

Let B € (1,(1++/5)/2] be a real number, and dpg(1) =0.t1ot5.... its Rényi
B-expansion of 1. The power series f3(2) := —1 4 Y;>1 t;z' is called the Parry
Upper function at B.
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Proposition

For1 < B < (1++/5)/2 any real number, with dg(1) = 0.t bots ..., the Parry
Upper function fg(z) is such that fg(1/B8) = 0. It is such that fg(z) +1 has
coefficients in the alphabet <73 = {0,1} and is Lyndon. It takes the form

f3(2) = Gaye(p) + 2™ + 2™ 4 ...+ 2" ZMart 4 (13)

with my —dyg(B) > dyg(B) — 1, mgy1 — mg > dyg(B) — 1 for g > 1. Conversely,
given a power series

A4z 2" 2ZM 4 ZM 42T 2T (14)

withn>3, my —n>n—1, mg, 1 —mg > n—1forq>1, then there exists an
unique B € (1,(1++/5)/2) for which n = dyg(B) with fg(2) equal to (14).

Moreover, if B, 1 < B < (1++/5)/2, is a reciprocal algebraic integer, the
power series (13) is never a polynomial.

v
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Completing the lenticular curve

Proposition
The class ¢ is the set of Parry Upper functions fg(z) for all simple Parry
numbers in (1,(1++/5)/2).

Recall : the set of Parry numbers is dense in (1,+co).
By the properties of (x, ) — Tg(x),
Proposition

The root functions of fg(z) valued in |z| < 1 are all continuous, as functions of
Be(1,6,7)\Un=a{6;"}-
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Rewriting trails

Now consider a reciprocal algebraic integer
Be(1,(1+v5)/2).
Two functions characterize the same “object” 3 :

Pg(x) minimal polynomial

and

fs(2).
A priori they have nothing in common. The Parry Upper function has a
lenticulus of zeroes containing z = 1/B. By a rewriting process, in base 3, we
show that, in a certain angular sector, approximately (—z/18,+x/18), the
lenticular zeroes should also be zeroes of the minimal polynomial Pg(x).

The minorant of M() we are looking for arises from this subset of Galois
conjugates of 1/, (therefore of f3).
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What is a rewriting trail ?

Let us construct the rewriting trail from “Ss” (a section of f3(z)) to “Pg”, at 5.

The starting point is the identity 1 = 1, to which we add 0 = SYs(y;1) in the
(rhs) right hand side. Then we define the rewriting trail from the Rényi
v; '-expansion of 1

1=1+S.(B ) =t% " +r2+.  +ts 1%V tey;® (15)
(withty =1, b=t=...=t,_1 =0, =1, etc) to
_ _ —(d—1 _ _
—arys —aytt o —ag 1% T — =1 Py ), (16)
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by “restoring” the digits of 1 — Pg(X) one after the other, from the left. We
obtain a sequence (Agy(X))q>1 of rewriting polynomials involved in this
rewriting trail ; for g > 1, A, € Z[X], deg(Aj) < g and A(0) = 1. At the first

step we add 0 = —(—as — t)ys ' S;, (7 ') ; and we obtain
1=—a;y'

H(—(~ar -t + )y 2+ (—(—ar — )b+ &)y + ...
so that the height of the polynomial

(—(—31 — t1)t1 +t2)X2+(—(—a1 — t1)t2+t3)X3+...

is<H+2.
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At the second stepwe add 0 = —(—ao — (—(—ay — t1) ) + tg))ygzs;s(yg1 ).
Then we obtain
1=-ay ' -ay’

—[(—a2—(—(—ar —t)ty + L))t + (—(—ar — )+ )] 15> + ..
where the height of the polynomial

—[(—a2— (—(—ar —t)ty + L))t + (—(—ar — )+ )] X+ ..
is <H+(H+2)+ (H+2)=3H+4. lterating this process d times we obtain
1=—aiys ' —ar?—... —ag¥%’

+ polynomial remainder in y;'.
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Denote by V(y; ') this polynomial remainder in y; ', for some V(X) € Z[X],
and X specializing in 75 '. If we denote the upper bound of the height of the
polynomial remainder V(X), at step q, by AqH + vq, we readily deduce :

Vg =29, and Ag11 =24g+1, g > 1, with 4y = 1;then 15 =29 1.

To summarize, the first rewriting polynomials of the sequence (Ag(X))g>1
involved in this rewriting trail are

Ai(X)=—1—(-a —h)X,

Alz(X) =—1- (—a1 —H )X—(—ag — (—(—31 - t1)t1 —|—t2))X2, etc.

May 2 - DiophantLehme/r38

J.-L. Verger-Gaugry (Lecture 4-1)



For g > deg(Pg), all the coefficients of Pg are “restored” ; denote by
(hq,)j=0,1,..s—1 the s-tuple of integers produced by this rewriting trail, at step
g. Itis such that

s—1 ,
A8 = P ) + % T (L hegte?)- (17)
j=0
Then take q = d. The (lIhs) left-and side of (17) is equal to 0. Thus

s—1 » s—1 i
P(ys") =" (Z hd,ﬂ’sj) = P(vs) =Y hajvs’
j=0 j=0
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The height of the polynomial

s—1 )
W(X):=Y ha; Xt is < (29-1)H+27, (18)
j=0
and is independent of s > W,,.

For any s > W,, let us observe that —Pﬁ(y;‘) is > 0, and that the sequence
(y;1 )s is decreasing. By an easy Lemma, the polynomial function x — Pg(x)
is positive on (0,8~1), vanishes at =, and changes its sign for x > =1, so
that Pg(ys ') < 0. We have : lims_,.. Pg(ys ') = Pg(B~") = 0.
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Kala-Vavra Theorem, 2019

to allow Galois conjugation of 1/ we need to control the remaining sums
after the rewriting trails.

This is made possible using Kala-Vara’s Theorem, and the fact that the

irreducible factors C(x) , in the factorization of any P € ¢, never vanish on the
unit circle.
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Let us recall the definitions. The (9, .27 )-representations for a given § € C,
|6] > 1 and a given alphabet < C C finite, are expressions of the form
Yi>—L axdk, ax € o, for some integer L. We denote

Per./(0) := {x € C: x hasaneventually periodic (0, .2 ) —representation}.

Theorem (Kala - Vavra)

Let 6 € C be an algebraic number of degree d, |6| > 1, and

agx? —ag_1x9-1— ... —ayx —ay € Z|x], agay # 0, be its minimal polynomial.
Suppose that |8'| # 1 for any conjugate &' of 8, Then there exists a finite
alphabet of C Z such that

Q(6) =Per(9).
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Dobrowolski-type minoration

Denote by anax = 5.87433... the abscissa of the maximum of the function

a— x(1,a) = % on (0,0). Let x := k(1, amax) = 0.171573... be the

value of the maximum. Let S:=2arcsin(x/2) =0.171784.... Denote

_1 /OSLOg [1 +2sin(3) — \/1 —12sin(%) +4(sin(’2‘))2} dx)

/\r,LLr :eXp(7 4

=1.15411.. a value slightly below Lehmer’s number 1.17628... (19)

Theorem (Dobrowolski type minoration)

Let a be a nonzero reciprocal algebraic integer which is not a root of unity
such that dyg(o) > 260, with M(o) < 1.176280.... Then

S 1
M(oa) > Arptr — Arpty o7 (m) (20)
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Comparatively, in 1979, Dobrowolski, using an auxiliary function, obtained the
asymptotic minoration, with n = deg(«),

LogL 3
M(a)>1+(1—e)<‘ﬁ)g"§”), n> no, 1)

with 1 — ¢ replaced by 1/1200 for n > 2, for an effective version of the
minoration. In the inequality, the constant in the minorant is not any more 1
but 1.15411... and the sign of the n-dependent term is negative, with an
appreciable gain of (Logn)? in the denominator.

It provides the non-trivial universal minorant of M. But we do not know if
Lehmer’s number 1.176280... is the smallest Mahler measure. It is the
smallest one known.
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