Lecture No 4 : Algebraic Equations from a Class of Integer Polynomials Having Lacunarity Conditions. II.

In this lecture we show that an **universal non-trivial minorant of** $M(\alpha)$ for α a reciprocal nonzero real > 1 algebraic integer which is not root of unity can be obtained from the class of integer polynomials

$$\mathscr{C} := \{-1 + x + x^n + x^{m_1} + x^{m_2} + \ldots + x^{m_s} :$$

$$n \ge 3, m_1 - n \ge n - 1, m_q - m_{q-1} \ge n - 1 \quad \text{for} \quad 2 \le q \le s\}.$$

More precisely : from the curve formed by the lenticular roots of the Ps of \mathscr{C} .

Recall : for $P \in \mathscr{C}$, say $P(x) = -1 + x + x^n + x^{m_1} + x^{m_2} + \ldots + x^{m_s}$, with

$$n \ge 3, m_1 - n \ge n - 1, m_q - m_{q-1} \ge n - 1$$
 for $2 \le q \le s,$
 $P(x) = A(x)B(x)C(x)$

with

- A(x) product of cyclotomic polynomials, often trivial (75 %),

- B(x) product of reciprocal non-cyclotomic irreducible factors, conjectured to be inexistant,

- C(x) irreducible non-reciprocal (unique factor), vanishing at the unique zero of P in (0,1).

Let γ be the unique zero of P(x) in (0,1): $C(\gamma) = 0$.

The lenticulus of roots of *P* is composed of Galois conjugates of *C*, conjugated with γ , and γ is non-reciprocal. Existence domain : $\Re(z) > 1/2$.

Example with n = 37:

 $P(x) := (-1 + x + x^{37}) + x^{81} + x^{140} + x^{184} + x^{232} + x^{285} + x^{350} + x^{389} + x^{450} + x^{514} + x^{550} + x^{590} + x^{649}$

FIGURE: a) The 37 zeroes of $G_{37}(x) = -1 + x + x^{37}$, b) The 649 zeroes of $P(x) = G_{37}(x) + \ldots + x^{649}$. The lenticulus of roots of P is obtained by a very slight deformation of the restriction of the lenticulus of roots of G_{37} to the angular sector $|\arg z| < \pi/18$, off the unit circle. The other roots (nonlenticular) of P can be found in a narrow annular neighbourhood of |z| = 1.

J.-L. Verger-Gaugry (Lecture 4-I)

Q1 : Is it possible to solve the Problem of Lehmer for the subcollection of \mathscr{C} of the trinomials $(-1 + x + x^n)_{n>3}$ using the lenticuli of roots in $\Re > 1/2$?

Yes + method asymptotic expansions of the roots. Limit Mahler measure = 1.38....

Q2 : Is it possible to solve the Problem of Lehmer for the complete collection \mathscr{C} of polynomials $(P)_{n,m_1,m_2,...,m_s}$ using the curves formed by their lenticuli of roots in $\Re > 1/2$, or an angular part of them, without taking into account the other roots stuck on the unit circle ?

Yes + same method, but useless since all γ s are non-reciprocal. And by C. Smyth's Theorem we know that

 $M(P) = M(A)M(B)M(C) = M(C) = M(\gamma) \ge 1.32...$ smallest Pisot number

since the γ s are **non-reciprocal**.

Q3 : Is it possible to solve the Problem of Lehmer for the set of real **reciprocal** algebraic integers $\beta > 1$ by extending the method and using the above curves formed by the lenticuli of roots of the *P*s of \mathscr{C} in $\Re > 1/2$, or an angular part of them ?

Yes + same method + completion of the lenticular curves using Rényi-Parry dynamical systems of numeration + rewriting trails + identification with Kala-Vavra's Theorem.

May 2 - DiophantLehmer

Lecture 4.II :

- Solution of the Problem of Lehmer, via lenticuli of roots
- Rényi dynamical systems of numeration
- Completion of the lenticular curve, rewriting trails
- Identification of lenticular roots, Theorem of Kala Vavra
- Dobrowolski type minoration, minoration of the Mahler measure.

May 2 - DiophantLehmer

38

Let $\beta > 1$ be a real number and let $\mathscr{A}_{\beta} := \{0, 1, 2, \dots, \lceil \beta - 1 \rceil\}$. If β is not an integer, then $\lceil \beta - 1 \rceil = \lfloor \beta \rfloor$.

Let *x* be a real number in the interval [0,1]. A representation in base β (or a β -representation; or a β -ary representation if β is an integer) of *x* is an infinite word $(x_i)_{i\geq 1}$ of $\mathscr{A}_{\beta}^{\mathbb{N}}$ such that

$$x=\sum_{i\geq 1}\,x_i\beta^{-i}\,.$$

The main difference with the case where β is an integer is that *x* may have several representations.

May 2 - DiophantLehmer

A particular β -representation, called the β -expansion, or the greedy β -expansion, and denoted by $d_{\beta}(x)$, of x can be computed either by the greedy algorithm, or equivalently by the β -transformation

 $T_{\beta}: x \mapsto \beta x \pmod{1} = \{\beta x\}.$

The dynamical system ([0,1], T_{β}) is called the Rényi-Parry numeration system in base β , the iterates of T_{β} providing the successive digits x_i of $d_{\beta}(x)$. Denoting $T_{\beta}^0 := \text{Id}, T_{\beta}^1 := T_{\beta}, T_{\beta}^i := T_{\beta}(T_{\beta}^{i-1})$ for all $i \ge 1$, we have :

 $d_{\beta}(x) = (x_i)_{i \ge 1}$ if and only if $x_i = \lfloor \beta T_{\beta}^{i-1}(x) \rfloor$

and we write the β -expansion of *x* as

$$x = \cdot x_1 x_2 x_3 \dots$$
 instead of $x = \frac{x_1}{\beta} + \frac{x_2}{\beta^2} + \frac{x_3}{\beta^3} + \dots$ (1)

The digits are $x_1 = \lfloor \beta x \rfloor$, $x_2 = \lfloor \beta \{ \beta x \} \rfloor$, $x_3 = \lfloor \beta \{ \beta \{ \beta x \} \} \rfloor$, ..., depend upon β .

J.-L. Verger-Gaugry (Lecture 4-I)

The Rényi-Parry numeration dynamical system in base β allows the coding, as a (positional) β -expansion, of any real number *x*.

Indeed, if x > 0, there exists $k \in \mathbb{Z}$ such that $\beta^k \le x < \beta^{k+1}$. Hence $1/\beta \le x/\beta^{k+1} < 1$; thus it is enough to deal with representations and β -expansions of numbers in the interval $[1/\beta, 1]$. In the case where $k \ge 1$, the β -expansion of x is

$$x = x_1 x_2 \dots x_k \cdot x_{k+1} x_{k+2} \dots,$$

with $x_1 = \lfloor \beta(x/\beta^{k+1}) \rfloor$, $x_2 = \lfloor \beta\{\beta(x/\beta^{k+1})\} \rfloor$, $x_3 = \lfloor \beta\{\beta\{\beta(x/\beta^{k+1})\}\} \rfloor$, etc.

If x < 0, by definition : $d_{\beta}(x) = -d_{\beta}(-x)$.

The part $x_1x_2...x_k$ is called the β -integer part of the β -expansion of x, and the terminant $\cdot x_{k+1}x_{k+2}...$ is called the β -fractional part of $d_{\beta}(x)$.

May 2 - DiophantLehmer

The set $\mathscr{A}_{\beta}^{\mathbb{N}}$ is endowed with the lexicographical order (not usual in number theory), and the product topology. The one-sided shift $\sigma : (x_i)_{i\geq 1} \mapsto (x_{i+1})_{i\geq 1}$ leaves invariant the subset D_{β} of the β -expansions of real numbers in [0, 1). The closure of D_{β} in $\mathscr{A}_{\beta}^{\mathbb{N}}$ is called the β -shift, and is denoted by S_{β} . The β -shift is a subshift of $\mathscr{A}_{\beta}^{\mathbb{N}}$, for which

$$d_eta \circ T_eta = \sigma \circ d_eta$$

holds on the interval [0,1]. In other terms, S_{β} is such that

$$x \in [0,1] \qquad \longleftrightarrow \qquad (x_i)_{i \ge 1} \in S_{\beta}$$
 (2)

is bijective.

This one-to-one correspondence between the totally ordered interval [0,1] and the totally lexicographically ordered β -shift S_{β} is fundamental.

Parry has shown that only one sequence of digits entirely controls the β -shift S_{β} , and that the ordering is preserved when dealing with the greedy β -expansions.

Let us make precise how the usual inequality "<" on the real line is transformed into the inequality "< $_{lex}$ ", meaning "lexicographically smaller with all its shifts".

The greatest element of S_{β} : it comes from x = 1 and is given either by the Rényi β -expansion of 1, or by a slight modification of it in case of finiteness. Let us make it precise. The greedy β -expansion of 1 is by definition denoted by

$$d_{\beta}(1) = 0.t_1 t_2 t_3 \dots$$
 and uniquely corresponds to $1 = \sum_{i=1}^{+\infty} t_i \beta^{-i}$, (3)

1 00

May 2 - DiophantLehmer

38

where

$$t_{1} = \lfloor \beta \rfloor, t_{2} = \lfloor \beta \{\beta\} \rfloor = \lfloor \beta T_{\beta}(1) \rfloor, t_{3} = \lfloor \beta \{\beta \{\beta\}\} \rfloor = \lfloor \beta T_{\beta}^{2}(1) \rfloor, \dots$$
(4)

The sequence $(t_i)_{i\geq 1}$ is given by the orbit of one $(T_{\beta}^{j}(1))_{j\geq 0}$ by

$$T^{0}_{\beta}(1) = 1, \ T^{j}_{\beta}(1) = \beta^{j} - t_{1}\beta^{j-1} - t_{2}\beta^{j-2} - \dots - t_{j} \in \mathbb{Z}[\beta] \cap [0, 1]$$
(5)

May 2 - DiophantLehmer

38

for all $j \ge 1$. The digits t_i belong to \mathscr{A}_β . We say that $d_\beta(1)$ is finite if it ends in infinitely many zeros.

Definition

If $d_{\beta}(1)$ is finite or ultimately periodic (i.e. eventually periodic), then the real number $\beta > 1$ is said to be a *Parry number*. In particular, a Parry number β is said to be *simple* if $d_{\beta}(1)$ is finite.

Proposition (Parry)

The set of simple Parry numbers is dense in $(1, +\infty)$.

From $(t_i)_{i\geq 1} \in \mathscr{A}_{\beta}^{\mathbb{N}}$ is built $(c_i)_{i\geq 1} \in \mathscr{A}_{\beta}^{\mathbb{N}}$, defined by

$$c_1 c_2 c_3 \ldots := \begin{cases} t_1 t_2 t_3 \ldots & \text{if } d_{\beta}(1) = 0.t_1 t_2 \ldots \text{ is infinite,} \\ (t_1 t_2 \ldots t_{q-1}(t_q - 1))^{\omega} & \text{if } d_{\beta}(1) \text{ is finite,} = 0.t_1 t_2 \ldots t_q, \end{cases}$$

where ()^{ω} means that the word within () is indefinitely repeated. The sequence $(c_i)_{i\geq 1}$ is the unique element of $\mathscr{A}_{\beta}^{\mathbb{N}}$ which allows to obtain all the admissible β -expansions of all the elements of [0, 1).

May 2 - DiophantLehmer

Definition (Conditions of Parry)

A sequence $(y_i)_{i\geq 0}$ of elements of \mathscr{A}_β (finite or not) is said *admissible* if

$$\sigma^{j}(y_{0}, y_{1}, y_{2}, \ldots) = (y_{j}, y_{j+1}, y_{j+2}, \ldots) <_{lex} (c_{1}, c_{2}, c_{3}, \ldots) \text{ for all } j \ge 0, \quad (6)$$

where $<_{lex}$ means lexicographically smaller.

Definition

A sequence $(a_i)_{i\geq 0} \in \mathscr{A}_{\beta}^{\mathbb{N}}$ satisfying (7) is said to be Lyndon (or self-admissible) :

$$\sigma^{n}(a_{0}, a_{1}, a_{2}, \ldots) = (a_{n}, a_{n+1}, a_{n+2}, \ldots) <_{lex} (a_{0}, a_{1}, a_{2}, \ldots)$$
 for all $n \ge 1$. (7)

The terminology comes from the introduction of such words by Lyndon, in honour of his work.

Any admissible representation $(x_i)_{i\geq 1} \in \mathscr{A}_{\beta}^{\mathbb{N}}$ corresponds, by (1), to a real number $x \in [0, 1)$ and conversely the greedy β -expansion of x is $(x_i)_{i\geq 1}$ itself.

For an infinite admissible sequence $(y_i)_{i\geq 0}$ of elements of \mathscr{A}_{β} the (strict) lexicographical inequalities (6) constitute an infinite number of inequalities which are unusual in number theory.

May 2 - DiophantLehmer

In number theory, inequalities are often associated to collections of half-spaces in euclidean or adelic Geometry of Numbers (Minkowski's Theorem, etc).

The conditions of Parry are of totally different nature since they refer to a reasonable control, order-preserving, of the gappiness (lacunarity) of the coefficient vectors of the power series.

In the correspondence

$$[0,1] \longleftrightarrow S_{\beta},$$

May 2 - DiophantLehmer

38

the element x = 1 admits the maximal element $d_{\beta}(1)$ as counterpart. The uniqueness of the β -expansion $d_{\beta}(1)$ and its property to be Lyndon characterize the base of numeration β as follows.

Proposition (Parry)

Let $(a_0, a_1, a_2, ...)$ be a sequence of non-negative integers where $a_0 \ge 1$ and $a_n \le a_0$ for all $n \ge 0$. The unique solution $\beta > 1$ of

$$1 = \frac{a_0}{x} + \frac{a_1}{x^2} + \frac{a_2}{x^3} + \dots$$
 (8)

is such that $d_{\beta}(1) = 0.a_0a_1a_2...$ if and only if

 $\sigma^{n}(a_{0}, a_{1}, a_{2}, \ldots) = (a_{n}, a_{n+1}, a_{n+2}, \ldots) <_{lex} (a_{0}, a_{1}, a_{2}, \ldots)$ for all $n \ge 1$. (9)

Theorem (VG, '05)

Let $\beta > 1$ be an algebraic number such that $d_{\beta}(1)$ is infinite and gappy in the sense that there exist two infinite sequences $\{m_n\}_{n\geq 1}$ and $\{s_n\}_{n\geq 0}$ such that

$$1 = s_0 \le m_1 < s_1 \le m_2 < s_2 \le \ldots \le m_n < s_n \le m_{n+1} < s_{n+1} \le \ldots$$

with $(s_n - m_n) \ge 2$, $t_{m_n} \ne 0$, $t_{s_n} \ne 0$ and $t_i = 0$ if $m_n < i < s_n$ for all $n \ge 1$. Then

$$\limsup_{n \to +\infty} \frac{s_n}{m_n} \le \frac{\log\left(\mathrm{M}(\beta)\right)}{\log\beta}$$
(10)

May 2 - DiophantLehmer

Varying the base of numeration β in the interval (1,2) :

for all $\beta \in (1,2)$, being an algebraic number or a transcendental number, the alphabet \mathscr{A}_{β} of the β -shift is always the same : {0,1}. All the digits of all β -expansions $d_{\beta}(1)$ are zeroes or ones. Parry ('60) has proved that the relation of order $1 < \alpha < \beta < 2$ is preserved on the corresponding greedy α - and β - expansions $d_{\alpha}(1)$ and $d_{\beta}(1)$ as follows.

May 2 - DiophantLehmer

Proposition

Let $\alpha > 1$ and $\beta > 1$. If the Rényi α -expansion of 1 is

$$d_{\alpha}(1) = 0.t'_{1}t'_{2}t'_{3}..., \qquad i.e. \quad 1 = \frac{t'_{1}}{\alpha} + \frac{t'_{2}}{\alpha^{2}} + \frac{t'_{3}}{\alpha^{3}} + ...$$

and the Rényi β -expansion of 1 is

$$d_{\beta}(1) = 0.t_1 t_2 t_3 \dots,$$
 i.e. $1 = \frac{t_1}{\beta} + \frac{t_2}{\beta^2} + \frac{t_3}{\beta^3} + \dots,$

May 2 - DiophantLehmer

38

then $\alpha < \beta$ if and only if $(t'_1, t'_2, t'_3, ...) <_{lex} (t_1, t_2, t_3, ...)$.

J.-L. Verger-Gaugry (Lecture 4-I)

This interval is partitioned by the decreasing sequence $(\theta_n^{-1})_{n\geq 2}$ as

$$\left(1,\frac{1+\sqrt{5}}{2}\right] = \bigcup_{n=2}^{\infty} \left[\theta_{n+1}^{-1},\theta_n^{-1}\right) \bigcup \left\{\theta_2^{-1}\right\}.$$
 (11)

Recall : θ_n is the unique root of $-1 + x + x^n$ in (0, 1).

The condition of minimality on the length of the gaps of zeroes in $(t_i)_{i\geq 1}$ is only a function of the interval $\left[\theta_{n+1}^{-1}, \theta_n^{-1}\right)$ to which β belongs, when β tends to 1.

Theorem

Let $n \ge 2$. A real number $\beta \in (1, \frac{1+\sqrt{5}}{2}]$ belongs to $[\theta_{n+1}^{-1}, \theta_n^{-1})$ if and only if the Rényi β -expansion of unity is of the form

$$d_{\beta}(1) = 0.10^{n-1} 10^{n_1} 10^{n_2} 10^{n_3} \dots, \qquad (12)$$

with $n_k \ge n-1$ for all $k \ge 1$.

Démonstration.

Since $d_{\theta_{n+1}^{-1}}(1) = 0.10^{n-1}1$ and $d_{\theta_n^{-1}}(1) = 0.10^{n-2}1$, Proposition 3 implies that the condition is sufficient. It is also necessary : $d_{\beta}(1)$ begins as $0.10^{n-1}1$ for all β such that $\theta_{n+1}^{-1} \leq \beta < \theta_n^{-1}$. For such β s we write $d_{\beta}(1) = 0.10^{n-1}1u$ with digits in the alphabet $\mathscr{A}_{\beta} = \{0,1\}$ common to all β s, that is

 $u = 1^{h_0} 0^{n_1} 1^{h_1} 0^{n_2} 1^{h_2} \dots$

and $h_0, n_1, h_1, n_2, h_2, \ldots$ integers ≥ 0 . The self-admissibility lexicographic condition (9) applied to the sequence $(1, 0^{n-1}, 1^{1+h_0}, 0^{n_1}, 1^{h_1}, 0^{n_2}, 1^{h_3}, \ldots)$, which characterizes uniquely the base of numeration β , readily implies $h_0 = 0$ and $h_k = 1$ and $n_k \geq n-1$ for all $k \geq 1$.

Definition

Let $\beta \in (1, \frac{1+\sqrt{5}}{2}]$ be a real number. The integer $n \ge 3$ such that $\theta_n^{-1} \le \beta < \theta_{n-1}^{-1}$ is called the *dynamical degree* of β , and is denoted by $dyg(\beta)$. By convention we put : $dyg(\frac{1+\sqrt{5}}{2}) = 2$.

The function $n = dyg(\beta)$ is locally constant on the interval $(1, \frac{1+\sqrt{5}}{2}]$, is decreasing, takes all values in $\mathbb{N} \setminus \{0, 1\}$, and satisfies : $\lim_{\beta > 1, \beta \to 1} dyg(\beta) = +\infty$.

May 2 - DiophantLehmer

Let us observe that the equality $deg(\beta) = dyg(\beta) = 2$ holds if $\beta = \frac{1+\sqrt{5}}{2}$, but the equality case is not the case in general.

Definition

A power series $\sum_{j=0}^{+\infty} a_j z^j$, with $a_j \in \{0, 1\}$ for all $j \ge 0$, is said to be *Lyndon (or self-admissible)* if its coefficient vector $(a_i)_{i>0}$ is Lyndon.

Definition

Let $\beta \in (1, (1 + \sqrt{5})/2]$ be a real number, and $d_{\beta}(1) = 0.t_1 t_2 t_3 \dots$ its Rényi β -expansion of 1. The power series $f_{\beta}(z) := -1 + \sum_{i \ge 1} t_i z^i$ is called the *Parry Upper function* at β .

May 2 - DiophantLehmer

Proposition

For $1 < \beta < (1 + \sqrt{5})/2$ any real number, with $d_{\beta}(1) = 0.t_1t_2t_3...$, the Parry Upper function $f_{\beta}(z)$ is such that $f_{\beta}(1/\beta) = 0$. It is such that $f_{\beta}(z) + 1$ has coefficients in the alphabet $\mathscr{A}_{\beta} = \{0,1\}$ and is Lyndon. It takes the form

$$f_{\beta}(z) = G_{\text{dyg}(\beta)} + z^{m_1} + z^{m_2} + \ldots + z^{m_q} + z^{m_{q+1}} + \ldots$$
(13)

with $m_1 - dyg(\beta) \ge dyg(\beta) - 1$, $m_{q+1} - m_q \ge dyg(\beta) - 1$ for $q \ge 1$. Conversely, given a power series

$$-1 + z + z^{n} + z^{m_{1}} + z^{m_{2}} + \ldots + z^{m_{q}} + z^{m_{q+1}} + \ldots$$
(14)

with $n \ge 3$, $m_1 - n \ge n - 1$, $m_{q+1} - m_q \ge n - 1$ for $q \ge 1$, then there exists an unique $\beta \in (1, (1 + \sqrt{5})/2)$ for which $n = dyg(\beta)$ with $f_{\beta}(z)$ equal to (14).

Moreover, if β , $1 < \beta < (1 + \sqrt{5})/2$, is a reciprocal algebraic integer, the power series (13) is never a polynomial.

Proposition

The class \mathscr{C} is the set of Parry Upper functions $f_{\beta}(z)$ for all simple Parry numbers in $(1, (1 + \sqrt{5})/2)$.

Recall : the set of Parry numbers is dense in $(1, +\infty)$.

By the properties of $(x,\beta) \rightarrow T_{\beta}(x)$,

Proposition

The root functions of $f_{\beta}(z)$ valued in |z| < 1 are all continuous, as functions of $\beta \in (1, \theta_2^{-1}) \setminus \bigcup_{n \ge 3} \{\theta_n^{-1}\}.$

Rewriting trails

Now consider a reciprocal algebraic integer

```
\beta \in (1, (1 + \sqrt{5})/2).
```

Two functions characterize the same "object" β :

 $P_{\beta}(x)$ minimal polynomial

and

 $f_{\beta}(z).$

A priori they have nothing in common. The Parry Upper function has a lenticulus of zeroes containing $z = 1/\beta$. By a rewriting process, in base β , we show that, in a certain angular sector, approximately $(-\pi/18, +\pi/18)$, the lenticular zeroes should also be zeroes of the minimal polynomial $P_{\beta}(x)$.

The minorant of $M(\beta)$ we are looking for arises from this subset of Galois conjugates of $1/\beta$, (therefore of β).

What is a rewriting trail?

Let us construct the rewriting trail from " S_s " (a section of $f_{\beta}(z)$) to " P_{β} ", at γ_s^{-1} .

The starting point is the identity 1 = 1, to which we add $0 = S_{\gamma_s}(\gamma_s^{-1})$ in the (rhs) right hand side. Then we define the rewriting trail from the Rényi γ_s^{-1} -expansion of 1

$$1 = 1 + S_{\gamma_{s}}(\gamma_{s}^{-1}) = t_{1}\gamma_{s}^{-1} + t_{2}\gamma_{s}^{-2} + \ldots + t_{s-1}\gamma_{s}^{-(s-1)} + t_{s}\gamma_{s}^{-s}$$
(15)

(with $t_1 = 1, t_2 = t_3 = \ldots = t_{n-1} = 0, t_n = 1$, etc) to

$$-a_{1}\gamma_{s}^{-1}-a_{2}\gamma_{s}^{-2}+\ldots-a_{d-1}\gamma_{s}^{-(d-1)}-\gamma_{s}^{-d}=1-P_{\beta}(\gamma_{s}^{-1}), \quad (16)$$

by "restoring" the digits of $1 - P_{\beta}(X)$ one after the other, from the left. We obtain a sequence $(A'_q(X))_{q \ge 1}$ of rewriting polynomials involved in this rewriting trail; for $q \ge 1$, $A'_q \in \mathbb{Z}[X]$, $\deg(A'_q) \le q$ and $A'_q(0) = 1$. At the first step we add $0 = -(-a_1 - t_1)\gamma_s^{-1}S^*_{\gamma_s}(\gamma_s^{-1})$; and we obtain

$$1 = -a_1 \gamma_s^{-1}$$

+
$$(-(-a_1-t_1)t_1+t_2)\gamma_s^{-2}+(-(-a_1-t_1)t_2+t_3)\gamma_s^{-3}+\dots$$

so that the height of the polynomial

$$(-(-a_1-t_1)t_1+t_2)X^2+(-(-a_1-t_1)t_2+t_3)X^3+\dots$$

May 2 - DiophantLehmer

38

is $\leq H + 2$.

At the second step we add $0 = -(-a_2 - (-(-a_1 - t_1)t_1 + t_2))\gamma_s^{-2}S_{\gamma_s}^*(\gamma_s^{-1})$. Then we obtain

$$1 = -a_1 \gamma_s^{-1} - a_2 \gamma_s^{-2}$$

 $-[(-a_2-(-(-a_1-t_1)t_1+t_2))t_1+(-(-a_1-t_1)t_2+t_3)]\gamma_s^{-3}+\ldots$

where the height of the polynomial

$$-[(-a_2-(-(-a_1-t_1)t_1+t_2))t_1+(-(-a_1-t_1)t_2+t_3)]X^3+\ldots$$

is $\leq H + (H+2) + (H+2) = 3H+4$. Iterating this process *d* times we obtain

$$1 = -a_1\gamma_s^{-1} - a_2\gamma_s^{-2} - \ldots - a_d\gamma_s^{-d}$$

+ polynomial remainder in γ_s^{-1} .

Denote by $V(\gamma_s^{-1})$ this polynomial remainder in γ_s^{-1} , for some $V(X) \in \mathbb{Z}[X]$, and X specializing in γ_s^{-1} . If we denote the upper bound of the height of the polynomial remainder V(X), at step q, by $\lambda_q H + v_q$, we readily deduce : $v_q = 2^q$, and $\lambda_{q+1} = 2\lambda_q + 1$, $q \ge 1$, with $\lambda_1 = 1$; then $\lambda_q = 2^q - 1$.

To summarize, the first rewriting polynomials of the sequence $(A'_q(X))_{q\geq 1}$ involved in this rewriting trail are

$$A_1'(X) = -1 - (-a_1 - t_1)X,$$

$$A'_2(X) = -1 - (-a_1 - t_1)X - (-a_2 - (-(-a_1 - t_1)t_1 + t_2))X^2$$
, etc.

For $q \ge \deg(P_{\beta})$, all the coefficients of P_{β} are "restored"; denote by $(h_{q,j})_{j=0,1,\dots,s-1}$ the *s*-tuple of integers produced by this rewriting trail, at step q. It is such that

$$\mathcal{A}'_{q}(\gamma_{s}^{-1})S^{*}_{\gamma_{s}}(\gamma_{s}^{-1}) = -\mathcal{P}(\gamma_{s}^{-1}) + \gamma_{s}^{-q-1}\Big(\sum_{j=0}^{s-1}h_{q,j}\gamma_{s}^{-j}\Big).$$
(17)

Then take q = d. The (lhs) left-and side of (17) is equal to 0. Thus

$$P(\gamma_{s}^{-1}) = \gamma_{s}^{-d-1} \left(\sum_{j=0}^{s-1} h_{d,j} \gamma_{s}^{-j} \right) \implies P(\gamma_{s}) = \sum_{j=0}^{s-1} h_{d,j} \gamma_{s}^{-j-1}.$$

The height of the polynomial

$$W(X) := \sum_{j=0}^{s-1} h_{d,j} X^{j+1}$$
 is $\leq (2^d - 1)H + 2^d$, (18)

May 2 - DiophantLehmer

38

and is independent of $s \ge W_v$.

For any $s \ge W_v$, let us observe that $-P_{\beta}(\gamma_s^{-1})$ is > 0, and that the sequence $(\gamma_s^{-1})_s$ is decreasing. By an easy Lemma, the polynomial function $x \to P_{\beta}(x)$ is positive on $(0, \beta^{-1})$, vanishes at β^{-1} , and changes its sign for $x > \beta^{-1}$, so that $P_{\beta}(\gamma_s^{-1}) < 0$. We have : $\lim_{s\to\infty} P_{\beta}(\gamma_s^{-1}) = P_{\beta}(\beta^{-1}) = 0$.

J.-L. Verger-Gaugry (Lecture 4-I)

to allow Galois conjugation of $1/\beta$ we need to control the remaining sums after the rewriting trails.

This is made possible using Kala-Vara's Theorem, and the fact that the irreducible factors C(x), in the factorization of any $P \in \mathcal{C}$, never vanish on the unit circle.

Let us recall the definitions. The (δ, \mathscr{A}) -representations for a given $\delta \in \mathbb{C}$, $|\delta| > 1$ and a given alphabet $\mathscr{A} \subset \mathbb{C}$ finite, are expressions of the form $\sum_{k \geq -L} a_k \delta^{-k}$, $a_k \in \mathscr{A}$, for some integer *L*. We denote

 $\operatorname{Per}_{\mathscr{A}}(\delta) := \{ x \in \mathbb{C} : x \text{ has an eventually periodic}(\delta, \mathscr{A}) - \operatorname{representation} \}.$

Theorem (Kala - Vavra)

Let $\delta \in \mathbb{C}$ be an algebraic number of degree d, $|\delta| > 1$, and $a_d x^d - a_{d-1} x^{d-1} - \ldots - a_1 x - a_0 \in \mathbb{Z}[x]$, $a_0 a_d \neq 0$, be its minimal polynomial. Suppose that $|\delta'| \neq 1$ for any conjugate δ' of δ , Then there exists a finite alphabet $\mathscr{A} \subset \mathbb{Z}$ such that

$$\mathbb{Q}(\delta) = \operatorname{Per}_{\mathscr{A}}(\delta).$$

May 2 - DiophantLehmer

38

J.-L. Verger-Gaugry (Lecture 4-I)

Dobrowolski-type minoration

Denote by $a_{\max} = 5.87433...$ the abscissa of the maximum of the function $a \to \kappa(1, a) := \frac{1 - \exp(\frac{\pi}{a})}{2\exp(\frac{\pi}{a}) - 1}$ on $(0, \infty)$. Let $\kappa := \kappa(1, a_{\max}) = 0.171573...$ be the value of the maximum. Let $S := 2\arcsin(\kappa/2) = 0.171784...$ Denote

$$\Lambda_r \mu_r := \exp\left(\frac{-1}{\pi} \int_0^S \log\left[\frac{1 + 2\sin(\frac{x}{2}) - \sqrt{1 - 12\sin(\frac{x}{2}) + 4(\sin(\frac{x}{2}))^2}}{4}\right] dx\right)$$

= 1.15411..., a value slightly below Lehmer's number 1.17628... (19)

Theorem (Dobrowolski type minoration)

Let α be a nonzero reciprocal algebraic integer which is not a root of unity such that $dyg(\alpha) \ge 260$, with $M(\alpha) < 1.176280...$ Then

$$M(\alpha) \ge \Lambda_r \mu_r - \Lambda_r \mu_r \frac{S}{2\pi} \left(\frac{1}{\text{Log}(\text{dyg}(\alpha))} \right)$$
(20)

Comparatively, in 1979, Dobrowolski, using an auxiliary function, obtained the asymptotic minoration, with $n = \text{deg}(\alpha)$,

$$M(\alpha) > 1 + (1 - \varepsilon) \left(\frac{\log \log n}{\log n}\right)^3, \qquad n > n_0, \tag{21}$$

May 2 - DiophantLehmer

38

with $1 - \varepsilon$ replaced by 1/1200 for $n \ge 2$, for an effective version of the minoration. In the inequality, the constant in the minorant is not any more 1 but 1.15411... and the sign of the *n*-dependent term is negative, with an appreciable gain of $(\text{Log } n)^2$ in the denominator.

It provides the non-trivial universal minorant of M. But we do not know if Lehmer's number 1.176280... is the smallest Mahler measure. It is the smallest one known.