Lecture No 4 : Algebraic Equations from a Class of Integer Polynomials Having Lacunarity Conditions. I.

In this lecture we consider the class of integer polynomials

$$
\begin{aligned}
& \mathscr{C}:=\left\{-1+x+x^{n}+x^{m_{1}}+x^{m_{2}}+\ldots+x^{m_{s}}:\right. \\
& \left.\quad n \geq 3, m_{1}-n \geq n-1, m_{q}-m_{q-1} \geq n-1 \text { for } 2 \leq q \leq s\right\} .
\end{aligned}
$$

trinomial $-1+x+x^{n}+$ a Newman polynomial
lacunarity : $n-1$

$$
\begin{aligned}
& \mathrm{ex}:-1+x+x^{6},-1+x+x^{6}+x^{27}+x^{32} \\
& 1+x+x^{6}+x^{27}+x^{32}+x^{129}+x^{614}, \ldots
\end{aligned}
$$

class

$$
\begin{aligned}
& \mathscr{C}:=\left\{-1+x+x^{n}+x^{m_{1}}+x^{m_{2}}+\ldots+x^{m_{s}}:\right. \\
& \left.\quad n \geq 3, m_{1}-n \geq n-1, m_{q}-m_{q-1} \geq n-1 \text { for } 2 \leq q \leq s\right\} .
\end{aligned}
$$

Main Obj : zeroes, factorization, as functions

- of n (lacunarity) and $\left(m_{1}, \ldots, m_{s}\right)$,
- of the zeroes of $-1+x+x^{n}$, when n and s become large, expressed as explicit functions of n, with :
\rightarrow the study of the limit, n fixed, for s tending to ∞, and n tending to infinity.

Goal : non-trivial minoration of the Mahler measure of real reciprocal algebraic integers, not roots of unity (Pb of Lehmer).

May 2 - DiophantLē̄mer

Lecture 4.I :

- class of lacunary polynomials,
- Problem of Lehmer, Mahler measure, Conjecture of Lehmer
- roots of $P \in \mathscr{C}$ - asymptotic expansions, the case of trinomials
- factorization - Ljunggren

0000000

Lecture 4.II : Rényi systems of numeration associated to \mathscr{C}, rewriting trails, a lenticular curve, universal minoration of the Mahler measure.

Problem of Lehmer

Definition : Weil height : let $\alpha \in \overline{\mathbb{Q}}^{*}, P_{\alpha}(X)=a_{0}\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right) \ldots\left(X-\alpha_{n}\right)$ $=a_{0} X^{n}+a_{1} X^{n-1}+\ldots+a_{n-1} X+a_{n} \in \mathbb{Z}[X], a_{0} a_{n} \neq 0$, its minimal polynomial.

The (abs. log.) Weil height of α is

$$
h(\alpha)=\frac{1}{n} \log \left(\left|a_{0}\right| \prod_{i=1}^{n} \max \left\{1,\left|\alpha_{i}\right|\right\}\right)
$$

Prop : $h(p / q)=\log \max (|p|,|q|),(p, q)=1, \quad h(1)=0$, $h(\alpha) \geq 0$ for all $\alpha \in \overline{\mathbb{Q}}^{*}$, $h\left(\alpha^{r}\right)=|r| h(\alpha)$, for $r \in \mathbb{Z}, \alpha \in \overline{\mathbb{Q}}^{*}, \quad h(1 / \alpha)=h(\alpha)$, $h(\sigma(\alpha))=h(\alpha)$, for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.

Problem of Lehmer

Definition : Mahler measure : for

$$
\begin{gathered}
P(X)=a_{0}\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right) \ldots\left(X-\alpha_{n}\right)= \\
a_{0} X^{n}+a_{1} X^{n-1}+\ldots+a_{n-1} X+a_{n} \in \mathbb{Z}[X], \quad a_{0} a_{n} \neq 0
\end{gathered}
$$

then

$$
\mathrm{M}(P):=\left|a_{0}\right| \prod_{i,\left|\alpha_{i}\right| \geq 1}\left|\alpha_{i}\right| .
$$

multiplicativity : $P=P_{1} \times P_{2} \times \ldots \times P_{m}, \Rightarrow \mathrm{M}(P)=\mathrm{M}\left(P_{1}\right) \ldots \mathrm{M}\left(P_{m}\right)$.
ex. : $P=\Phi_{1} \times \ldots \times \Phi_{r} \times R$ with R irr. pol., Φ_{j} cyclot. $\Longrightarrow \mathrm{M}(P)=\mathrm{M}(R)$.
α alg. number, deg $\alpha=n, P_{\alpha}$ his minimal polynomial, $\mathrm{M}(\alpha):=\mathrm{M}\left(P_{\alpha}\right)$. Absolute logarithmic, Weil height of α :

$$
h(\alpha):=\frac{\log \mathrm{M}(\alpha)}{d}
$$

Problem of Lehmer

$$
\begin{aligned}
& \text { facts : } \mathrm{M}(\alpha)=\mathrm{M}\left(\alpha^{-1}\right) \text {, } \\
& \mathrm{M}(\alpha)=\alpha \text { if } \alpha \in \mathrm{S} \text { (= set of Pisot numbers ; }\left|\alpha_{i}\right|<1 \text {), } \\
& \mathrm{M}(\alpha)=\alpha \text { if } \alpha \in \mathrm{T} \text { (}=\text { set of Salem numbers ; }\left|\alpha_{i}\right|<1 \text { with at least one } \\
& \left.\left|\alpha_{j}\right|=1\right) \text {, } \\
& \mathrm{M}(\alpha)=1 \text { if } \alpha \text { is a root of unity. }
\end{aligned}
$$

Kronecker's Theorem(1857) : Let α be a nonzero algebraic integer. Then $\mathrm{M}(\alpha)=1$ iff α is a root of unity.
practice in Arithm. Geo. :
$\mathrm{M}(\alpha)$ calculated \rightarrow useful to calculate $h(\alpha)$,
height $h=$ sum of local contributions \rightarrow useful to prove Theorems.
May 2 - DiophantLē̄mer

Problem of Lehmer

Adler Marcus (1979) (topological entropy and equivalence of dynamical systems), Perron-Frobenius theory) :

$$
\begin{aligned}
& \{\mathrm{M}(\alpha) \mid \alpha \text { alg. number }\} \subset \mathbb{P}_{\text {Perron }} \\
& \quad\{\mathrm{M}(P) \mid P \in \mathbb{Z}[X]\} \subset \mathbb{P}_{\text {Perron }}
\end{aligned}
$$

Two strict inclusions (Dubickas 2004, Boyd 1981).
Definition : $\alpha \in \mathbb{P}_{\text {Perron }}$ if $\alpha=1$ or if $\alpha>1$ is a real algebraic integer, for which the conjugates $\alpha^{(i)}$ satisfy $\left|\alpha^{(i)}\right|<\alpha$ (i.e. dominant root >1).

May 2 - DiophantLē̄mer

Problem of Lehmer

Northcott's Theorem : for all $B \geq 0, d \geq 1$,

$$
\#\{\alpha \in \overline{\mathbb{Q}} \mid h(\alpha) \leq B,[\mathbb{Q}(\alpha): \mathbb{Q}] \leq d\}<+\infty
$$

in Dio. Geom. : bound on "degree" + bound on " h " gives finiteness property (Mordell eff., etc).

Conjecture of Lehmer : there exists $c>0$ such that

$$
\mathrm{M}(\alpha) \geq 1+c
$$

for any algebraic number $\alpha \neq 0$ which is not a root of unity,
i.e. the interval $(1,1+c) \cap \mathbb{P}_{\text {Perron }}$ is deprived of any value of Mahler measure of any algebraic number.
$->$ values : discontinuity at 1 (meaning, sense, of c ?).
May 2 - DióphantLēmer

Lehmer's problem (1933)

in the exhaustive search for large prime numbers: if ε is a positive quantity, to find a polynomial of the form

$$
f(x)=x^{r}+a_{1} x^{r-1}+\ldots+a_{r}
$$

where the $a_{i} s$ are integers, such that the absolute value of the product of those roots of f which lie outside the unit circle, lies between 1 and $1+\varepsilon \ldots$ Whether or not the problem has a solution for $\varepsilon<0.176$ we do not know.

Lehmer's strategy: P_{α} with small M : useful to obtain large prime numbers p, in the Pierce numbers of α. Iwasawa theory : large powers of primes. Einsiedler, Everest and Ward : study of the density of such ps.

May 2 - DiōphantLēmer

Lehmer's Problem is a limit problem + restrictions :

$$
\mathrm{M}(P):=\left|a_{0}\right| \prod_{i,\left|\alpha_{i}\right| \geq 1}\left|\alpha_{i}\right| \quad \Longrightarrow \mathrm{M}(P):=\left|a_{0}\right| \geq\left|a_{0}\right| .
$$

Let $\alpha \in \overline{\mathbb{Q}}, P=P_{\alpha}$:

* if $\alpha \in \overline{\mathbb{Q}} \backslash \mathscr{O}_{\overline{\mathbb{Q}}}$, then $\left|a_{0}\right| \geq 2 \quad \Longrightarrow \mathrm{M}(P) \geq 2$,
* if α is an algebraic integer which is not reciprocal ($P_{\alpha} \neq P_{\alpha}^{*}$ with

$$
\left.P_{\alpha}^{*}(X)=X^{\operatorname{deg} P_{\alpha}} P_{\alpha}(1 / X) \quad\right)
$$

Smyth's Theorem ' $71 \Longrightarrow \mathrm{M}\left(P_{\alpha}\right) \geq \Theta=1.32 \ldots$ (= smallest Pisot number, $X^{3}-X-1$ mini. pol.).

Lehmer's Problem is a limit problem for reciprocal algebraic integers :
$|\alpha| \neq 1$

$$
\mathrm{M}(\alpha):=|\alpha| \prod_{i,\left|\alpha_{i}\right| \geq 1}\left|\alpha_{i}\right| \quad \Longrightarrow \quad \mathrm{M}(\alpha) \geq|\alpha|
$$

Lehmer's problem corresponds to an accumulation of conjugates, when the house $|\alpha|$ tends to 1^{+}.

The investigation has to bear only on the set of nonzero reciprocal algebraic integers which are not roots of unity.

Roots of any $P \in \mathscr{C}$

Exact expressions of the roots of any $P(x) \in \mathscr{C}$ (then of their moduli, then of M).
what can be expected from "classical" theories?

- Galois Theory : radical expressions (multiplication, addition, subtraction, division, extraction of roots, only permitted on the coefficients), in degrees $n \leq 6, m_{s} \leq 6$,
- Mellin Theory (1915) : hypergeometric multiple integrals - several variables, Mellin's Inversion formula.

Mellin's approach

$$
\gamma(y)=y^{n}+x_{1} y^{n_{1}}+x_{2} y^{n_{2}}+\ldots+x_{p} y^{n_{p}}-1=0, \quad n>n_{s} \geq 1(s=1,2, \ldots, p)
$$

The solution $y=y\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ which takes the value 1 for $x_{1}=x_{2}=\ldots=x_{p}=0$ is called

Mellin's Hauptlösung, or Principal Solution.
The other solutions are all obtained from it : if $\varepsilon^{n}=1$, then

$$
\varepsilon y\left(\varepsilon^{n_{1}} x_{1}, \varepsilon^{n_{2}} x_{2}, \ldots, \varepsilon^{n_{p}} x_{p}\right)
$$

since :

$$
(\varepsilon y)^{n}+(\varepsilon)^{-n_{1}} x_{1}(\varepsilon y)^{n_{1}}+(\varepsilon)^{-n_{2}} x_{2}(\varepsilon y)^{n_{2}}+\ldots+(\varepsilon)^{-n_{p}} x_{p}(\varepsilon y)^{n_{p}}-1=0 .
$$

Mellin's parameters :

$$
\begin{gathered}
y=W^{-\frac{1}{n}}, \quad W=1+\xi_{1}+\xi_{2}+\ldots+\xi_{p} \\
x_{s}=\xi_{s} W^{\frac{n_{s}}{n}-1} \\
\frac{\partial\left(x_{1}, x_{2}, \ldots, x_{p}\right)}{\partial\left(\xi_{1}, \xi_{2}, \ldots, \xi_{p}\right)}=\left(1+\frac{n_{1}}{n} \xi_{1}+\frac{n_{2}}{n} \xi_{2}+\ldots+\frac{n_{p}}{n} \xi_{p}\right) W^{\frac{n_{1}+n_{2}+\ldots+n_{p}}{n}-p-1}
\end{gathered}
$$

Then, for $\mu>0$ large enough,

$$
\begin{gathered}
\int_{0}^{\infty} \int_{0}^{\infty} \ldots \int_{0}^{\infty} y^{\mu} x_{1}^{u_{1}-1} x_{2}^{u_{2}-1} \ldots x_{p}^{u_{p}-1} d x_{1} d x_{2} \ldots d x_{p} \\
=\int_{0}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} y^{\mu} x_{1}^{u_{1}-1} x_{2}^{u_{2}-1} \ldots x_{p}^{u_{p}-1} \frac{\partial\left(x_{1}, x_{2}, \ldots, x_{p}\right)}{\partial\left(\xi_{1}, \xi_{2}, \ldots, \xi_{p}\right)} d \xi_{1} d \xi_{2} \ldots d \xi_{p}
\end{gathered}
$$

with $\mathfrak{R}\left(u_{1}\right)>0, \mathfrak{R}\left(u_{2}\right)>0, \ldots, \Re\left(u_{p}\right)>0, \mathfrak{R}\left(\mu-n_{1} u_{1}-\ldots-n_{p} u_{p}\right)>0$

Let $u=\frac{1}{n}\left(\mu-n_{1} u_{1}-\ldots-n_{p} u_{p}\right)$.
Then

$$
=\int_{0}^{\infty} \int_{0}^{\infty} \ldots \int_{0}^{\infty} \Phi \times \xi_{1}^{u_{1}-1} \xi_{2}^{u_{2}-1} \ldots \xi_{p}^{u_{p}-1} d \xi_{1} d \xi_{2} \ldots d \xi_{p}
$$

with

$$
\Phi=\frac{\left(1+\frac{n_{1}}{n} \xi_{1}+\frac{n_{2}}{n} \xi_{2}+\ldots+\frac{n_{p}}{n} \xi_{p}\right)}{W^{u+u_{1}+u_{2}+\ldots+u_{p}+1}} .
$$

now, use Mellin's inversion formula.

Inversion Formula :

$$
\begin{gathered}
\int_{0}^{\infty} \int_{0}^{\infty} \ldots \int_{0}^{\infty} \frac{1}{W^{w}} \xi_{1}^{u_{1}-1} \xi_{2}^{u_{2}-1} \ldots \xi_{p}^{u_{p}-1} d \xi_{1} d \xi_{2} \ldots d \xi_{p} \\
=\frac{\Gamma\left(u_{1}\right) \Gamma\left(u_{2}\right) \ldots \Gamma\left(u_{p}\right) \Gamma\left(w-u_{1}-u_{2} \ldots-u_{p}\right)}{\Gamma(w)}
\end{gathered}
$$

Principal solutions :

$\left(y\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)^{\mu}=$

$$
\left(\frac{1}{2 i \pi}\right)^{p} \times \int_{a_{1}-i \infty}^{a_{1}+i \infty} \int_{a_{2}-i \infty}^{a_{2}+i \infty} \cdots \int_{a_{p}-i \infty}^{a_{p}+i \infty} F x_{1}^{-u_{1}} x_{2}^{-u_{2}} \ldots x_{p}^{-u_{p}} d u_{1} d u_{2} \ldots d u_{p}
$$

with

$$
\begin{gathered}
F=\frac{\mu}{n} \frac{\Gamma(u) \Gamma\left(u_{1}\right) \Gamma\left(u_{2}\right) \ldots \Gamma\left(u_{p}\right)}{\Gamma\left(u+u_{1}+u_{2}+\ldots+u_{p}+1\right)} \\
a_{i}>0 \quad \text { well chosen }
\end{gathered}
$$

and conditions of convergence.
Class \mathscr{C} : coefficients x_{i} in $\{0,1\}$ and lacunarity for

$$
\gamma(y)=y^{n}+x_{1} y^{n_{1}}+x_{2} y^{n_{2}}+\ldots+x_{p} y^{n_{p}}-1=0
$$

(Mellin) the roots of a general algebraic equation can be expressed as hypergeometric multiple integrals bearing on the Γ-function.

Disadvantage :

- unsuitable to study the limit n fixed and s tending to infinity for $P \in \mathscr{C}$,
- does not take into account the factorization of any $P \in \mathscr{C}$,
- if $P(x)=-1+x+x^{n}+Q(x) \in \mathscr{C}$ unable to establish the closeness of a subcollection of roots with the roots of $-1+x+x^{n}$.

Exact expressions of the roots of $-1+x+x^{n}$ as asymptotic expansions

Copson, Erdelyi, Dingle : Theory of asymptotic expansions. Given as D + tl, though ideally exact with infinitely many terms. Denote $\theta_{n} \in(0,1)$ the unique root of $G_{n}(x):=-1+x+x^{n}, n \geq 3$.

Proposition

Let $n \geq 3$. The root θ_{n} can be expressed as : $\theta_{n}=\mathrm{D}\left(\theta_{n}\right)+\mathrm{tl}\left(\theta_{n}\right)$ with $\mathrm{D}\left(\theta_{n}\right)=1-$

$$
\begin{equation*}
\frac{\log n}{n}\left(1-\left(\frac{n-\log n}{n \log n+n-\log n}\right)\left(\log \log n-n \log \left(1-\frac{\log n}{n}\right)-\log n\right)\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{tl}\left(\theta_{n}\right)=\frac{1}{n} O\left(\left(\frac{\log \log n}{\log n}\right)^{2}\right) \tag{2}
\end{equation*}
$$

with the constant $1 / 2$ involved in $O()$.

Proof : Let us put $\theta_{n}=1-\frac{t}{n}$ with $0<t<n$. Then

$$
\begin{equation*}
\frac{t}{n}=\left(1-\frac{t}{n}\right)^{n} \tag{3}
\end{equation*}
$$

Let us show that $t<\log n$. Let $g(x)=x e^{x}$ be the increasing function of the variable x on \mathbb{R}. The equation (3) implies $\frac{t}{n}=\left(1-\frac{t}{n}\right)^{n}<e^{-t} \Leftrightarrow g(t)<n$. Since $n<n \log n$ for $n \geq 3$ and $g(\log n)=n \log n$, we deduce the claim. Taking the logarithm of (3) we obtain

$$
\log t-\log n=n \log \left(1-\frac{t}{n}\right)=-t-\frac{1}{2} \frac{t^{2}}{n}-\frac{1}{3} \frac{t^{3}}{n^{2}}-\ldots
$$

The identity

$$
\begin{equation*}
t+\log t+\frac{1}{2} \frac{t^{2}}{n}+\frac{1}{3} \frac{t^{3}}{n^{2}}+\ldots=\log n \tag{4}
\end{equation*}
$$

has now to be inversed in order to obtain t as a function of n.

For doing this, we put $t=\log n+w$. Equation (4) transforms into the following equation in w :
$(\log n+w)+\log (\log n+w)+\frac{1}{2} \frac{(\log n+w)^{2}}{n}+\frac{1}{3} \frac{(\log n+w)^{3}}{n^{2}}+\ldots=\log n$.
We deduce

$$
\left.\begin{array}{rl}
w+\log (\log n)+\log (1+ & \left.\frac{w}{\log n}\right)
\end{array}\right) \frac{1}{2} \frac{\log ^{2} n}{n}\left(1+\frac{w}{\log n}\right)^{2} .
$$

Since

$$
n \log \left(1-\frac{\log n}{n}\right)+\log n=-\frac{1}{2} \frac{\log ^{2} n}{n}-\frac{1}{3} \frac{\log ^{3} n}{n^{2}}-\ldots
$$

and that

$$
\log \left(1+\frac{w}{\log n}\right)=\frac{w}{\log n}-\frac{w^{2}}{2 \log ^{2} n}+\frac{w^{3}}{3 \log ^{3} n}-\ldots
$$

we have :

$$
\log \log n-n \log \left(1-\frac{\log n}{n}\right)-\log n
$$

$$
\begin{align*}
=w & {\left[-1-\frac{1}{\log n}-\frac{\log n}{n}-\frac{\log ^{2} n}{n^{2}}-\frac{\log ^{3} n}{n^{3}}-\ldots\right] } \\
& +w^{2}\left[\frac{1}{2 \log ^{2} n}-\frac{1}{2 n}-\frac{\log n}{n^{2}}-\frac{6}{4} \frac{\log ^{2} n}{n^{3}}-\ldots\right]+\ldots \tag{5}
\end{align*}
$$

May 2 - DiōphantLēmer

The coefficient coeff(w) of w is

$$
-1-\frac{1}{\log n}-\frac{\log n}{n}\left(1+\frac{\log n}{n}+\left(\frac{\log n}{n}\right)^{2}+\ldots\right)=\frac{-n \log n-n+\log n}{(\log n)(n-\log n)}
$$

We deduce

$$
\begin{equation*}
w=\frac{(\log n)(n-\log n)\left(\log \log n-n \log \left(1-\frac{\log n}{n}\right)-\log n\right)}{-n \log n-n+\log n}+\ldots \tag{6}
\end{equation*}
$$

which gives the expression of $D\left(\theta_{n}\right)$.
Let us write w in (6) as $\mathrm{D}(w)+u$, where u denotes the remainding terms.
Putting $w=\mathrm{D}(w)+u$ in (5) we obtain, for large n,

$$
0=u \operatorname{coeff}(w)+\mathrm{D}(w)^{2} \frac{1}{2 \log ^{2} n}+\ldots .
$$

Since, for large $n, \operatorname{coeff}(w) \cong-1$ and $\mathrm{D}(w) \cong-\log \log n$, we deduce :

$$
u \cong O\left(\left(\frac{\log \log n}{\log n}\right)^{2}\right)
$$

with a constant $1 / 2$ involved in $O()$. We deduce the tail til $\left(\theta_{n}\right)$ of $\theta_{n}-$ May 2 DiophantLēmer

Roots enumerated by increasing argument : $j=1,2,3, \ldots$ from the real axis

FIGURE: The roots (black bullets) of $G_{n}(x)$ (represented here with $\left.n=28\right)$. A slight bump appears in the half-plane $\mathfrak{R}(z)>1 / 2$ in the neighbourhood of 1 , at the origin of the different regimes of asymptotic expansions.

May 2 - DiophantLēmer
$z_{j, n}$ roots : : obtain their asymptotic expansions, in a similar way. a strictly increasing sequence with j :

$$
0<\arg \left(z_{1, n}\right)<\arg \left(z_{2, n}\right)<\ldots<\arg \left(z_{\left\lfloor\frac{n}{2}\right\rfloor, n}\right) \leq \pi .
$$

angular sector to consider :[$-\pi / 3,+\pi / 3]$, i.e. $\Re>1 / 2$.

We write

$$
\begin{gathered}
\theta_{n}=\mathrm{D}\left(\theta_{n}\right)+\operatorname{tl}\left(\theta_{n}\right), \\
\operatorname{Re}\left(z_{j, n}\right)=\mathrm{D}\left(\operatorname{Re}\left(z_{j, n}\right)\right)+\operatorname{tl}\left(\operatorname{Re}\left(z_{j, n}\right)\right), \\
\operatorname{Im}\left(z_{j, n}\right)=\mathrm{D}\left(\operatorname{Im}\left(z_{j, n}\right)\right)+\mathrm{tl}\left(\operatorname{Im}\left(z_{j, n}\right)\right),
\end{gathered}
$$

where "D" stands for "development" (or "limited expansion", or "lowest order terms") and "tl" for "tail" (or "remainder", or "terminant"), and consider the products

$$
\Pi_{G_{n}}:=D\left(\mathrm{M}\left(G_{n}\right)\right)=D\left(\theta_{n}\right)^{-1} \times \prod_{z_{j, n} \text { in }|z|<1, \Re>1 / 2} \mathrm{D}\left(\left|z_{j, n}\right|\right)^{-2}
$$

instead of $\mathrm{M}\left(G_{n}\right)$, as approximant value of $\mathrm{M}\left(G_{n}\right)$.

Limit Mahler measure

Theorem

Let χ_{3} be the uniquely specified odd character of conductor $3\left(\chi_{3}(m)=0,1\right.$ or -1 according to whether $m \equiv 0,1$ or $2(\bmod 3)$, equivalently $\chi_{3}(m)=\left(\frac{m}{3}\right)$ the Jacobi symbol), and denote $L\left(s, \chi_{3}\right)=\sum_{m \geq 1} \frac{\chi_{3}(m)}{m^{s}}$ the Dirichlet L-series for the character χ_{3}. Then

$$
\begin{gather*}
\lim _{n \rightarrow+\infty} \mathrm{M}\left(G_{n}\right)=\exp \left(\frac{3 \sqrt{3}}{4 \pi} \mathrm{~L}\left(2, \chi_{3}\right)\right)=\exp \left(\frac{-1}{\pi} \int_{0}^{\pi / 3} \log \left(2 \sin \left(\frac{x}{2}\right)\right) d x\right) \\
=1.38135 \ldots=: \Lambda \tag{7}
\end{gather*}
$$

May 2 - DiōphantLēmer

Mahler measures expansions

Theorem

Let $n \geq 2$ be an integer. Then,

$$
\begin{equation*}
\mathrm{M}\left(-1+X+X^{n}\right)=\left(\lim _{m \rightarrow+\infty} \mathrm{M}\left(G_{m}\right)\right)\left(1+\frac{s(n)}{n^{2}}+O\left(n^{-3}\right)\right) \tag{8}
\end{equation*}
$$

with, for n odd :

$$
s(n)=\left\{\begin{array}{lll}
\sqrt{3} \pi / 18=+0.3023 \ldots & \text { if } n \equiv 1 \text { or } 3 & (\bmod 6), \\
-\sqrt{3} \pi / 6=-0.9069 \ldots & \text { if } n \equiv 5 & (\bmod 6),
\end{array}\right.
$$

for n even :

$$
s(n)=\left\{\begin{array}{lll}
-\sqrt{3} \pi / 36=-0.1511 \ldots & & \text { if } n \equiv 0 \text { or } 4 \\
& (\bmod 6), \\
+\sqrt{3} \pi / 12=+0.4534 \ldots & & \text { if } n \equiv 2
\end{array}(\bmod 6) .\right.
$$

Why mod 6 ?

Theorem (Selmer)

Let $n \geq 2$. If $n \not \equiv 5(\bmod 6)$, then $G_{n}(X)$ is irreducible. If $n \equiv 5(\bmod 6)$, then the polynomial $G_{n}(X)$ admits $X^{2}-X+1$ as irreducible factor in its factorization and $G_{n}(X) /\left(X^{2}-X+1\right)$ is irreducible.

In Lecture 4.II : we show that the class \mathscr{C} "contains the solution" of the Problem of Lehmer, for α being real > 1 in the set of nonzero reciprocal algebraic integers (which are not roots of unity) :
by extending the method.
Requirement in the general case : factorization of any $P \in \mathscr{C}$.

Factorization and lacunarity of a $P \in \mathscr{C}$

In a series of papers, A. Schinzel had obtained general theorems on the factorization of lacunary polynomials into 3 components :

- cyclotomic part,
- reciprocal non-cyclotomic part,
- non-reciprocal part.

They are not sufficient to investigate the class \mathscr{C}, with the present objectives on the Mahler measure.

No zero of modulus 1 - Ljunggren

Proposition

If $P(z) \in \mathbb{Z}[z], P(1) \neq 0$, is nonreciprocal and irreducible, then $P(z)$ has no root of modulus 1 .

Proof : Let $P(z)=a_{d} z^{d}+\ldots+a_{1} z+a_{0}, a_{0} a_{d} \neq 0$, be irreducible and nonreciprocal. We have $\operatorname{gcd}\left(a_{0}, \ldots, a_{d}\right)=1$. If $P(\zeta)=0$ for some $\zeta,|\zeta|=1$, then $P(\bar{\zeta})=0$. But $\bar{\zeta}=1 / \zeta$ and then $P(z)$ would vanish at $1 / \zeta$. Hence P would be a multiple of the minimal polynomial P^{*} of $1 / \zeta$. Since $\operatorname{deg}(P)=\operatorname{deg}\left(P^{*}\right)$ there exists $\lambda \neq 0, \lambda \in \mathbb{Q}$, such that $P=\lambda P^{*}$. In particular, looking at the dominant and constant terms, $a_{0}=\lambda a_{d}$ and $a_{d}=\lambda a_{0}$. Hence, $a_{0}=\lambda^{2} a_{0}$, implying $\lambda= \pm 1$. Therefore $P^{*}= \pm P$. Since P is assumed nonreciprocal, $P^{*} \neq P$, implying $P^{*}=-P$. Since
$P^{*}(1)=P(1)=-P(1)$, we would have $P(1)=0$. Contradiction.

Study of the irreducibility of the nonreciprocal parts of the polynomials of \mathscr{C} : method introduced by Ljunggren

Lemma (Ljunggren)

Let $P(x) \in \mathbb{Z}[x], \operatorname{deg}(P) \geq 2, P(0) \neq 0$. The nonreciprocal part of $P(x)$ is reducible if and only if there exists $w(x) \in \mathbb{Z}[x]$ different from $\pm P(x)$ and $\pm P^{*}(x)$ such that $w(x) w^{*}(x)=P(x) P^{*}(x)$.

Proof : Let us assume that the nonreciprocal part of $P(x)$ is reducible. Then there exists two nonreciprocal polynomials $u(x)$ and $v(x)$ such that $P(x)=u(x) v(x)$. Let $w(x)=u(x) v^{*}(x)$. We have :

$$
w(x) w^{*}(x)=u(x) v^{*}(x) u^{*}(x) v(x)=P(x) P^{*}(x)
$$

May 2 - DiophañtLē̄mer

Ljunggren

Conversely, let us assume that the nonreciprocal part $c(x)$ of $P(x)$ is irreducible and that there exists $w(x)$ different of $\pm P(x)$ and $\pm P^{*}(x)$ such that $w(x) w^{*}(x)=P(x) P^{*}(x)$. Let $P(x)=a(x) c(x)$ be the factorization of P where every irreducible factor in a is reciprocal. Then

$$
P(x) P^{*}(x)=a^{2}(x) c(x) c^{*}(x)=w(x) w^{*}(x) .
$$

We deduce $w(x)= \pm a(x) c(x)= \pm P(x)$ or $w(x)= \pm a(x) c^{*}(x)= \pm P^{*}(x)$.
Contradiction.

Ljunggren

Theorem

For any $f \in \mathscr{C}, n \geq 3$, denote by

$$
f(x)=A(x) B(x) C(x)=-1+x+x^{n}+x^{m_{1}}+x^{m_{2}}+\ldots+x^{m_{s}},
$$

where $s \geq 1, m_{1}-n \geq n-1, m_{j+1}-m_{j} \geq n-1$ for $1 \leq j<s$, the factorization of f where

A is the cyclotomic component,
B the reciprocal noncyclotomic component,
C the nonreciprocal part.
Then C is irreducible.
(generalizes Selmer's Theorem)
Cor. : C vanishes on the unique zero of $f(x)$ in $(0,1)$ and does not vanish on $|z|=1$.

Proof : Let us assume that C is reducible, and apply Ljunggren's Lemma. Then there should exist $w(x)$ different of $\pm f(x)$ and $\pm f^{*}(x)$ such that $w(x) w^{*}(x)=f(x) f^{*}(x)$. For short, we write

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}} \quad \text { and } \quad w(x)=\sum_{j=0}^{q} b_{j} x^{k_{j}}
$$

where the coefficients a_{j} and the exponents d_{j} are given, and the b_{j} 's and the k_{j} 's are unkown integers, with $\left|b_{j}\right| \geq 1,0 \leq j \leq q$,

$$
\begin{gathered}
a_{0}=-1, a_{1}=a_{2}=\ldots=a_{r}=1 \\
0=d_{0}<d_{1}=1<d_{2}=n<d_{3}=m_{1}<\ldots<d_{r-1}=m_{s-1}<d_{r}=m_{s} \\
0=k_{0}<k_{1}<k_{2}<\ldots<k_{q-1}<k_{q} .
\end{gathered}
$$

The relation $w(x) w^{*}(x)=f(x) f^{*}(x)$ implies the equality : $2 k_{q}=2 d_{r}$; expanding it and considering the terms of degree $k_{q}=d_{r}$, we deduce $\|f\|^{2}=\|w\|^{2}=r+1$ which is equal to $s+3$. Since $f^{*}(1)=f(1)$ and that $w^{*}(1)=w(1)$, it also implies $f(1)^{2}=w(1)^{2}$ and $b_{0} b_{q}=-1$. Then we have two equations

$$
r-1=\sum_{j=1}^{q-1} b_{j}^{2}, \quad(r-1)^{2}=\left(\sum_{j=1}^{q-1} b_{j}\right)^{2}
$$

We will show that they admit no solution except the solution $w(x)= \pm f(x)$ or $= \pm f^{*}(x)$.

Since all $\left|b_{j}\right|$'s are ≥ 1, the inequality $q \leq r$ necessarily holds. If $q=r$, then the b_{j} 's should all be equal to -1 or +1 , what corresponds to $\pm f(x)$ or to $\pm f^{*}(x)$. If $2 \leq q<r$, the maximal value taken by a coefficient b_{j}^{2} is equal to the largest square less than or equal to $r-q+1$, so that $\left|b_{j}\right| \leq \sqrt{r-q+1}$. Therefore there is no solution for the cases " $q=r-1$ " and " $q=r-2$ ". If $q=r-3$ all b_{j}^{2} 's are equal to 1 except one equal to 4 , and

$$
r-1=\sum_{j=1}^{r-4} b_{j}^{2}, \quad(r-1)^{2}>\left(\sum_{j=1}^{r-4} b_{j}\right)^{2}
$$

This means that the case " $q=r-3$ " is impossible. The two cases " $q=r-4$ " and " $q=r-5$ " are impossible since, for $m=5$ and $6, \sum_{j=1}^{r-m} b_{j}^{2}$ cannot be equal to $r-1$. This is general. For $q \leq r-3$ at least one of the $\left|b_{j}\right|$'s is equal to 2 ; in this case we would have

$$
r-1= \pm \sum_{j=1}^{q-1} b_{j} \leq \sum_{j=1}^{q-1}\left|b_{j}\right|<\sum_{j=1}^{q-1} b_{j}^{2}=r-1
$$

Contradiction.

Schinzel's Theorem

Theorem

Suppose $f(x) \in \mathscr{C}$ of the form

$$
-1+x+x^{n}+x^{m_{1}}+\ldots+x^{m_{s}}, \quad n \geq 3, s \geq 1
$$

Then the number $\omega(f)$, resp. $\omega_{1}(f)$, of irreducible factors, resp. of irreducible noncyclotomic factors, of $f(x)$ counted without multiplicities in both cases, satisfy
(i)

$$
\omega(f) \ll \sqrt{\frac{m_{s} \log (s+3)}{\log \log m_{s}}} \quad\left(m_{s} \rightarrow \infty\right)
$$

(ii) for every $\varepsilon \in(0,1)$,

$$
\omega_{1}(f)=o\left(m_{s}^{\varepsilon}\right)(\log (s+3))^{1-\varepsilon}, \quad\left(m_{s} \rightarrow \infty\right)
$$

Heuristics by adapted Monte-Carlo method

The bounds given by Schinzel's Theorem are quite large.

Result (heuristics) :
75% of the polynomials $P \in \mathscr{C}$ are irreducible, i.e. are reduced to their non-reciprocal component.

Remaining cases, found : the other factors are cyclotomic.

Examples:

$$
\begin{aligned}
& P(x):=\left(-1+x+x^{37}\right)+x^{81}+x^{140}+x^{184}+x^{232}+x^{285}+x^{350}+x^{389} \\
&+x^{450}+x^{514}+x^{550}+x^{590}+x^{649} \\
& \text { a) } \\
& \vdots
\end{aligned}
$$

Figure: a) The 37 zeroes of $G_{37}(x)=-1+x+x^{37}$, b) The 649 zeroes of $P(x)=G_{37}(x)+\ldots+x^{649}$. The lenticulus of roots of P is obtained by a very slight deformation of the restriction of the lenticulus of roots of G_{37} to the angular sector $|\arg z|<\pi / 18$, off the unit circle. The other roots (nonlenticular) of P can be found in a narrow annular neighbourhood of $|z|=1$.

The lenticulus of roots is a lenticulus of conjugates of the real zero $\in(0,1)$ of C in

Theorem

For any $f \in \mathscr{C}, n \geq 3$, denote by

$$
f(x)=A(x) B(x) C(x)=-1+x+x^{n}+x^{m_{1}}+x^{m_{2}}+\ldots+x^{m_{s}},
$$

where $s \geq 1, m_{1}-n \geq n-1, m_{j+1}-m_{j} \geq n-1$ for $1 \leq j<s$, the factorization of f where

A is the cyclotomic component,
B the reciprocal noncyclotomic component,
C the nonreciprocal part.
Then C is irreducible.
Cor. : C vanishes on the unique zero of $f(x)$ in $(0,1)$ and does not vanish on $|z|=1$.

Other examples

Figure: a) Zeroes of G_{81}, b) Zeroes of $P(x)=-1+x+x^{81}+x^{165}+x^{250}$. On the right the distribution of the roots of P is zoomed twice in the angular sector $-\pi / 18<\arg (z)<\pi / 18$.

Figure: a) Zeroes of G_{121}, b) Zeroes of $f(x)=-1+x+x^{121}+x^{250}+x^{385}$. On the right the distribution of the roots of f is zoomed twice in the angular sector $-\pi / 18<\arg (z)<\pi / 18$.

Links with Renyi dynamical numeration system :

Denote by $\beta>1$ the real number such that

$$
C\left(\beta^{-1}\right)=0
$$

where

$$
P(x)=A(x) B(x) C(x)=-1+x+x^{n}+x^{m_{1}}+x^{m_{2}}+\ldots+x^{m_{s}}
$$

where $s \geq 1, m_{1}-n \geq n-1, m_{j+1}-m_{j} \geq n-1$ for $1 \leq j<s$, the factorization of P.

Next Lecture : Introduce the β-transformation T_{β} and the properties of the Rényi dynamical systems for varying $\beta \mathrm{s}$:

$$
\left([0,1], T_{\beta}\right)
$$

