
Lecture No 4 : Algebraic Equations from a Class of Integer Polynomials Having

Lacunarity Conditions. I.

In this lecture we consider the class of integer polynomials

C := {−1 + x + xn + xm1 + xm2 + . . .+ xms :

n ≥ 3, m1−n ≥ n−1,mq−mq−1 ≥ n−1 for 2≤ q ≤ s}.

trinomial −1 + x + xn + a Newman polynomial

lacunarity : n−1

ex : −1 + x + x6, −1 + x + x6 + x27 + x32,
1 + x + x6 + x27 + x32 + x129 + x614, . . .
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class

C := {−1 + x + xn + xm1 + xm2 + . . .+ xms :

n ≥ 3, m1−n ≥ n−1,mq−mq−1 ≥ n−1 for 2≤ q ≤ s}.

Main Obj : zeroes, factorization, as functions
- of n (lacunarity) and (m1, . . . ,ms),
- of the zeroes of −1 + x + xn, when n and s become large,
expressed as explicit functions of n, with :

→ the study of the limit, n fixed, for s tending to ∞, and n tending to
infinity.

Goal : non-trivial minoration of the Mahler measure of real
reciprocal algebraic integers, not roots of unity (Pb of Lehmer).
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Lecture 4.I :

- class of lacunary polynomials,

- Problem of Lehmer, Mahler measure, Conjecture of Lehmer

- roots of P ∈ C - asymptotic expansions, the case of trinomials

- factorization - Ljunggren

ooooooo

Lecture 4.II : Rényi systems of numeration associated to C , rewriting trails, a
lenticular curve, universal minoration of the Mahler measure.
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Problem of Lehmer

Definition : Weil height : let α ∈Q∗, Pα (X ) = a0(X −α1)(X −α2) . . .(X −αn)

= a0X n + a1X n−1 + . . .+ an−1X + an ∈ Z[X ], a0an 6= 0, its minimal polynomial.

The (abs. log.) Weil height of α is

h(α) =
1
n

Log

(
|a0|

n

∏
i=1

max{1, |αi |}

)

Prop : h(p/q) = Log max(|p|, |q|), (p,q) = 1, h(1) = 0,
h(α)≥ 0 for all α ∈Q∗,
h(α r ) = |r |h(α), for r ∈ Z, α ∈Q∗, h(1/α) = h(α),
h(σ(α)) = h(α), for all σ ∈ Gal(Q/Q).
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Problem of Lehmer

Definition : Mahler measure : for

P(X ) = a0(X −α1)(X −α2) . . .(X −αn) =
a0X n + a1X n−1 + . . .+ an−1X + an ∈ Z[X ], a0an 6= 0

then
M(P) := |a0| ∏

i ,|αi |≥1
|αi |.

multiplicativity : P = P1×P2× . . .×Pm,⇒M(P) = M(P1) . . .M(Pm).

ex. : P = Φ1× . . .×Φr ×R with R irr. pol., Φj cyclot. =⇒M(P) = M(R).

α alg. number, deg α = n, Pα his minimal polynomial, M(α) := M(Pα ).
Absolute logarithmic, Weil height of α :

h(α) :=
LogM(α)

d
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Problem of Lehmer

facts : M(α) = M(α−1),

M(α) = α if α ∈ S (= set of Pisot numbers ; |αi |< 1),

M(α) = α if α ∈ T (= set of Salem numbers ; |αi |< 1 with at least one
|αj |= 1),

M(α) = 1 if α is a root of unity.

Kronecker’s Theorem(1857) : Let α be a nonzero algebraic integer. Then
M(α) = 1 iff α is a root of unity.

practice in Arithm. Geo. :

M(α) calculated→ useful to calculate h(α),

height h = sum of local contributions→ useful to prove Theorems.
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Problem of Lehmer

Adler Marcus (1979) (topological entropy and equivalence
of dynamical systems), Perron-Frobenius theory) :

{M(α) | α alg. number} ⊂ PPerron,

{M(P) | P ∈ Z[X ]} ⊂ PPerron.

Two strict inclusions (Dubickas 2004, Boyd 1981).

Definition : α ∈ PPerron if α = 1 or if α > 1 is a real algebraic integer, for
which the conjugates α(i) satisfy |α(i)|< α (i.e. dominant root > 1).
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Problem of Lehmer

Northcott’s Theorem : for all B ≥ 0, d ≥ 1,

#{α ∈Q | h(α)≤ B, [Q(α) : Q]≤ d}< +∞.

in Dio. Geom. : bound on “degree” + bound on “h” gives finiteness
property (Mordell eff., etc).

Conjecture of Lehmer : there exists c > 0 such that

M(α)≥ 1 + c

for any algebraic number α 6= 0 which is not a root of unity,

i.e. the interval (1,1 + c)∩PPerron is deprived of any value of Mahler
measure of any algebraic number.

−> values : discontinuity at 1 (meaning, sense, of c ?).
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Lehmer’s problem (1933)

in the exhaustive search for large prime numbers : if ε is a positive
quantity, to find a polynomial of the form

f (x) = x r + a1x r−1 + . . .+ ar

where the ais are integers, such that the absolute value of the product
of those roots of f which lie outside the unit circle, lies between 1 and
1 + ε... Whether or not the problem has a solution for ε < 0.176 we do
not know.

Lehmer’s strategy : Pα with small M : useful to obtain large prime
numbers p, in the Pierce numbers of α. Iwasawa theory : large powers
of primes. Einsiedler, Everest and Ward : study of the density of such
ps.
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Lehmer’s Problem is a limit problem + restrictions :

M(P) := |a0| ∏
i ,|αi |≥1

|αi | =⇒ M(P) := |a0| ≥ |a0|.

Let α ∈Q, P = Pα :

∗ if α ∈Q\OQ , then |a0| ≥ 2 =⇒ M(P)≥ 2,

∗ if α is an algebraic integer which is not reciprocal (Pα 6= P∗α with

P∗α (X ) = X degPα Pα (1/X ) ),

Smyth’s Theorem ’71 =⇒ M(Pα )≥Θ = 1.32 . . . (= smallest Pisot
number, X 3−X −1 mini. pol.).
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Lehmer’s Problem is a limit problem for reciprocal algebraic integers :

|α| 6= 1

M(α) := |α| ∏
i ,|αi |≥1

|αi | =⇒ M(α)≥ |α|.

Lehmer’s problem corresponds to an accumulation of conjugates, when the
house α tends to 1+.

The investigation has to bear only on the set of nonzero reciprocal algebraic
integers which are not roots of unity.
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Roots of any P ∈ C

Exact expressions of the roots of any P(x) ∈ C (then of their moduli, then of
M).

what can be expected from “classical” theories ?
- Galois Theory : radical expressions (multiplication, addition,
subtraction, division, extraction of roots, only permitted on the
coefficients), in degrees n ≤ 6, ms ≤ 6,
- Mellin Theory (1915) : hypergeometric multiple integrals - several
variables, Mellin’s Inversion formula.
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Mellin’s approach

γ(y) = yn + x1yn1 + x2yn2 + . . .+ xpynp −1 = 0, n > ns ≥ 1(s = 1,2, . . . ,p)

The solution y = y(x1,x2, . . . ,xp) which takes the value 1 for
x1 = x2 = . . . = xp = 0 is called

Mellin’s Hauptlösung, or Principal Solution.

The other solutions are all obtained from it : if εn = 1, then

εy(ε
n1x1,ε

n2x2, . . . ,ε
np xp)

since :

(εy)n + (ε)−n1x1(εy)n1 + (ε)−n2x2(εy)n2 + . . .+ (ε)−np xp(εy)np −1 = 0.
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Mellin’s parameters :

y = W− 1
n , W = 1 + ξ1 + ξ2 + . . .+ ξp

xs = ξsW
ns
n −1

∂ (x1,x2, . . . ,xp)

∂ (ξ1,ξ2, . . . ,ξp)
=
(

1 +
n1

n
ξ1 +

n2

n
ξ2 + . . .+

np

n
ξp

)
W

n1+n2+...+np
n −p−1

Then, for µ > 0 large enough,∫
∞

0

∫
∞

0
. . .
∫

∞

0
y µxu1−1

1 xu2−1
2 . . .xup−1

p dx1dx2 . . .dxp

=
∫

∞

0

∫
∞

0
. . .
∫

∞

0
y µxu1−1

1 xu2−1
2 . . .xup−1

p
∂ (x1,x2, . . . ,xp)

∂ (ξ1,ξ2, . . . ,ξp)
dξ1dξ2 . . .dξp

with ℜ(u1) > 0,ℜ(u2) > 0, . . . ,ℜ(up) > 0, ℜ(µ−n1u1− . . .−npup) > 0
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Let u = 1
n (µ−n1u1− . . .−npup).

Then
=
∫

∞

0

∫
∞

0
. . .
∫

∞

0
Φ ×ξ

u1−1
1 ξ

u2−1
2 . . .ξ

up−1
p dξ1dξ2 . . .dξp

with

Φ =

(
1 + n1

n ξ1 + n2
n ξ2 + . . .+

np
n ξp

)
W u+u1+u2+...+up+1 .

now, use Mellin’s inversion formula.
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Inversion Formula :

∫
∞

0

∫
∞

0
. . .
∫

∞

0

1
W w ξ

u1−1
1 ξ

u2−1
2 . . .ξ

up−1
p dξ1dξ2 . . .dξp

=
Γ(u1)Γ(u2) . . .Γ(up)Γ(w −u1−u2 . . .−up)

Γ(w)
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Principal solutions :

(y(x1,x2, . . . ,xp))µ =(
1

2iπ

)p

×
∫ a1+i∞

a1−i∞

∫ a2+i∞

a2−i∞
. . .
∫ ap+i∞

ap−i∞
F x−u1

1 x−u2
2 . . .x−up

p du1du2 . . .dup

with

F =
µ

n
Γ(u)Γ(u1)Γ(u2) . . .Γ(up)

Γ(u + u1 + u2 + . . .+ up + 1)

ai > 0 well chosen

and conditions of convergence.

Class C : coefficients xi in {0,1} and lacunarity for

γ(y) = yn + x1yn1 + x2yn2 + . . .+ xpynp −1 = 0
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(Mellin) the roots of a general algebraic equation can be expressed as
hypergeometric multiple integrals bearing on the Γ-function.

Disadvantage :

- unsuitable to study the limit n fixed and s tending to infinity for P ∈ C ,

- does not take into account the factorization of any P ∈ C ,

- if P(x) =−1 + x + xn + Q(x) ∈ C unable to establish the closeness of
a subcollection of roots with the roots of −1 + x + xn.
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Exact expressions of the roots of −1 + x + xn as asymptotic expansions

Copson, Erdelyi, Dingle : Theory of asymptotic expansions. Given as D + tl,
though ideally exact with infinitely many terms. Denote θn ∈ (0,1) the unique
root of Gn(x) :=−1 + x + xn, n ≥ 3.

Proposition

Let n ≥ 3. The root θn can be expressed as : θn = D(θn) + tl(θn) with
D(θn) = 1−

Logn
n

(
1−

(
n−Logn

nLogn + n−Logn

)(
LogLogn−nLog

(
1− Logn

n

)
−Logn

))
(1)

and

tl(θn) =
1
n

O

((
LogLogn

Logn

)2
)
, (2)

with the constant 1/2 involved in O ( ).
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Proof : Let us put θn = 1− t
n with 0 < t < n. Then

t
n

= (1− t
n

)n. (3)

Let us show that t < Logn. Let g(x) = xex be the increasing function of the
variable x on R. The equation (3) implies t

n = (1− t
n )n < e−t ⇔ g(t) < n.

Since n < nLogn for n ≥ 3 and g(Logn) = nLogn, we deduce the claim.
Taking the logarithm of (3) we obtain

Log t−Logn = nLog(1− t
n

) = −t− 1
2

t2

n
− 1

3
t3

n2 − . . . .

The identity

t + Log t +
1
2

t2

n
+

1
3

t3

n2 + . . . = Logn (4)

has now to be inversed in order to obtain t as a function of n.
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For doing this, we put t = Logn + w . Equation (4) transforms into the following
equation in w :

(Logn + w) + Log(Logn + w) +
1
2

(Logn + w)2

n
+

1
3

(Logn + w)3

n2 + . . . = Logn.

We deduce

w + Log(Logn) + Log(1 +
w

Logn
) +

1
2

Log2n
n

(
1 +

w
Logn

)2

+
1
3

Log3

n2

(
1 +

w
Logn

)3
+ . . . = 0.

Since

nLog(1− Logn
n

) + Logn =−1
2

Log2n
n
− 1

3
Log3n

n2 − . . .

and that

Log(1 +
w

Logn
) =

w
Logn

− w2

2Log2n
+

w3

3Log3n
− . . .

we have :

LogLogn−nLog(1− Logn
n

)−Logn
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= w
[
−1− 1

Logn
− Logn

n
− Log2n

n2 − Log3n
n3 − . . .

]
+ w2

[
1

2Log2n
− 1

2n
− Logn

n2 − 6
4

Log2n
n3 − . . .

]
+ . . . . (5)
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The coefficient coeff(w) of w is

−1− 1
Logn

− Logn
n

(
1 +

Logn
n

+

(
Logn

n

)2

+ . . .

)
=
−nLogn−n + Logn
(Logn)(n−Logn)

.

We deduce

w =
(Logn)(n−Logn)(LogLogn−nLog(1− Logn

n )−Logn)

−nLogn−n + Logn
+ . . . , (6)

which gives the expression of D(θn).
Let us write w in (6) as D(w) + u, where u denotes the remainding terms.
Putting w = D(w) + u in (5) we obtain, for large n,

0 = u coeff(w) + D(w)2 1
2Log2n

+ . . . .

Since, for large n, coeff(w)∼=−1 and D(w)∼=−LogLogn, we deduce :

u ∼= O

((
LogLogn

Logn

)2
)
,

with a constant 1/2 involved in O ( ). We deduce the tail tl(θn) of θn.
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Roots enumerated by increasing argument : j = 1,2,3, . . . from the real axis

-1 -0.5 0.5 1

-1

-0.5

0.5

1

�

�

FIGURE: The roots (black bullets) of Gn(x) (represented here with n = 28). A
slight bump appears in the half-plane ℜ(z) > 1/2 in the neighbourhood of 1,
at the origin of the different regimes of asymptotic expansions.
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zj ,n roots : : obtain their asymptotic expansions, in a similar way.

a strictly increasing sequence with j :

0 < arg(z1,n) < arg(z2,n) < .. . < arg(zb n
2 c,n

)≤ π.

angular sector to consider :[−π/3,+π/3], i.e.ℜ > 1/2.

We write
θn = D(θn) + tl(θn),

Re(zj ,n) = D(Re(zj ,n)) + tl(Re(zj ,n)),

Im(zj ,n) = D(Im(zj ,n)) + tl(Im(zj ,n)),

where ”D” stands for “development” (or “limited expansion”, or “lowest order
terms”) and ”tl” for “tail” (or “remainder”, or “terminant”), and consider the
products

ΠGn := D(M(Gn)) = D(θn)−1× ∏
zj ,n in |z|<1,ℜ>1/2

D(|zj ,n|)−2

instead of M(Gn), as approximant value of M(Gn).
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Limit Mahler measure

Theorem

Let χ3 be the uniquely specified odd character of conductor 3 (χ3(m) = 0,1 or
−1 according to whether m ≡ 0, 1 or 2 (mod 3), equivalently χ3(m) =

(m
3

)
the

Jacobi symbol), and denote L(s,χ3) = ∑m≥1
χ3(m)

ms the Dirichlet L-series for the
character χ3. Then

lim
n→+∞

M(Gn) = exp
(3
√

3
4π

L(2,χ3)
)

= exp
(
−1
π

∫
π/3

0
Log

(
2 sin

(x
2
))

dx
)

= 1.38135 . . . =: Λ. (7)
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Mahler measures expansions

Theorem

Let n ≥ 2 be an integer. Then,

M(−1 + X + X n) =

(
lim

m→+∞
M(Gm)

)(
1 +

s(n)

n2 + O(n−3)
)

(8)

with, for n odd :

s(n) =

{ √
3π/18 = +0.3023 . . . if n ≡ 1 or 3 (mod 6),

−
√

3π/6 =−0.9069 . . . if n ≡ 5 (mod 6),

for n even :

s(n) =

{
−
√

3π/36 =−0.1511 . . . if n ≡ 0 or 4 (mod 6),

+
√

3π/12 = +0.4534 . . . if n ≡ 2 (mod 6).
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Why mod 6 ?

Theorem (Selmer)

Let n ≥ 2. If n 6≡ 5 (mod 6), then Gn(X ) is irreducible. If n ≡ 5 (mod 6), then
the polynomial Gn(X ) admits X 2−X + 1 as irreducible factor in its
factorization and Gn(X )/(X 2−X + 1) is irreducible.

In Lecture 4.II : we show that the class C “contains the solution” of the
Problem of Lehmer, for α being real > 1 in the set of nonzero reciprocal
algebraic integers (which are not roots of unity) :

by extending the method.

Requirement in the general case : factorization of any P ∈ C .
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Factorization and lacunarity of a P ∈ C

In a series of papers, A. Schinzel had obtained general theorems on
the factorization of lacunary polynomials into 3 components :

- cyclotomic part,
- reciprocal non-cyclotomic part,
- non-reciprocal part.

They are not sufficient to investigate the class C , with the present
objectives on the Mahler measure.
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No zero of modulus 1 - Ljunggren

Proposition

If P(z) ∈ Z[z], P(1) 6= 0, is nonreciprocal and irreducible, then P(z) has no
root of modulus 1.

Proof : Let P(z) = ad zd + . . .+ a1z + a0, a0ad 6= 0, be irreducible and
nonreciprocal. We have gcd(a0, . . . ,ad ) = 1. If P(ζ ) = 0 for some ζ , |ζ |= 1,
then P(ζ ) = 0. But ζ = 1/ζ and then P(z) would vanish at 1/ζ . Hence P
would be a multiple of the minimal polynomial P∗ of 1/ζ . Since
deg(P) = deg(P∗) there exists λ 6= 0,λ ∈Q, such that P = λP∗.
In particular, looking at the dominant and constant terms, a0 = λad and
ad = λa0. Hence, a0 = λ 2a0, implying λ =±1. Therefore P∗ =±P. Since P is
assumed nonreciprocal, P∗ 6= P, implying P∗ =−P. Since
P∗(1) = P(1) =−P(1), we would have P(1) = 0. Contradiction.

J.-L. Verger-Gaugry (Lecture 4-I)
May 2 - DiophantLehmer 30

/ 43



Study of the irreducibility of the nonreciprocal parts of the polynomials of C :

method introduced by Ljunggren

Lemma (Ljunggren)

Let P(x) ∈ Z[x ], deg(P)≥ 2, P(0) 6= 0. The nonreciprocal part of P(x) is
reducible if and only if there exists w(x) ∈ Z[x ] different from ±P(x) and
±P∗(x) such that w(x)w∗(x) = P(x)P∗(x).

Proof : Let us assume that the nonreciprocal part of P(x) is reducible. Then
there exists two nonreciprocal polynomials u(x) and v(x) such that
P(x) = u(x)v(x). Let w(x) = u(x)v∗(x). We have :

w(x)w∗(x) = u(x)v∗(x)u∗(x)v(x) = P(x)P∗(x).
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Ljunggren

Conversely, let us assume that the nonreciprocal part c(x) of P(x) is
irreducible and that there exists w(x) different of ±P(x) and ±P∗(x) such that
w(x)w∗(x) = P(x)P∗(x). Let P(x) = a(x)c(x) be the factorization of P where
every irreducible factor in a is reciprocal. Then

P(x)P∗(x) = a2(x)c(x)c∗(x) = w(x)w∗(x).

We deduce w(x) =±a(x)c(x) =±P(x) or w(x) =±a(x)c∗(x) =±P∗(x).
Contradiction.
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Ljunggren

Theorem

For any f ∈ C , n ≥ 3, denote by

f (x) = A(x)B(x)C(x) =−1 + x + xn + xm1 + xm2 + . . .+ xms ,

where s ≥ 1, m1−n ≥ n−1, mj+1−mj ≥ n−1 for 1≤ j < s, the factorization
of f where

A is the cyclotomic component,

B the reciprocal noncyclotomic component,

C the nonreciprocal part.

Then C is irreducible.

(generalizes Selmer’s Theorem)
Cor. : C vanishes on the unique zero of f (x) in (0,1) and does not
vanish on |z|= 1.
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Proof : Let us assume that C is reducible, and apply Ljunggren’s Lemma.
Then there should exist w(x) different of ±f (x) and ±f ∗(x) such that
w(x)w∗(x) = f (x) f ∗(x). For short, we write

f (x) =
r

∑
j=0

ajxdj and w(x) =
q

∑
j=0

bjxkj

where the coefficients aj and the exponents dj are given, and the bj ’s and the
kj ’s are unkown integers, with |bj | ≥ 1, 0≤ j ≤ q,

a0 =−1, a1 = a2 = . . . = ar = 1,

0 = d0 < d1 = 1 < d2 = n < d3 = m1 < .. . < dr−1 = ms−1 < dr = ms,

0 = k0 < k1 < k2 < .. . < kq−1 < kq .
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The relation w(x)w∗(x) = f (x) f ∗(x) implies the equality : 2kq = 2dr ;
expanding it and considering the terms of degree kq = dr , we deduce
‖f‖2 = ‖w‖2 = r + 1 which is equal to s + 3. Since f ∗(1) = f (1) and that
w∗(1) = w(1), it also implies f (1)2 = w(1)2 and b0bq =−1. Then we have two
equations

r −1 =
q−1

∑
j=1

b2
j , (r −1)2 = (

q−1

∑
j=1

bj )
2.

We will show that they admit no solution except the solution w(x) =±f (x) or
=±f ∗(x).
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Since all |bj |’s are ≥ 1, the inequality q ≤ r necessarily holds. If q = r , then
the bj ’s should all be equal to −1 or +1, what corresponds to ±f (x) or to
±f ∗(x). If 2≤ q < r , the maximal value taken by a coefficient b2

j is equal to
the largest square less than or equal to r −q + 1, so that |bj | ≤

√
r −q + 1.

Therefore there is no solution for the cases “q = r −1” and “q = r −2”. If
q = r −3 all b2

j ’s are equal to 1 except one equal to 4, and

r −1 =
r−4

∑
j=1

b2
j , (r −1)2 > (

r−4

∑
j=1

bj )
2.

This means that the case “q = r −3” is impossible. The two cases “q = r −4”
and “q = r −5” are impossible since, for m = 5 and 6, ∑

r−m
j=1 b2

j cannot be
equal to r −1. This is general. For q ≤ r −3 at least one of the |bj |’s is equal
to 2 ; in this case we would have

r −1 =±
q−1

∑
j=1

bj ≤
q−1

∑
j=1
|bj |<

q−1

∑
j=1

b2
j = r −1.

Contradiction.
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Schinzel’s Theorem

Theorem

Suppose f (x) ∈ C of the form

−1 + x + xn + xm1 + . . .+ xms , n ≥ 3, s ≥ 1.

Then the number ω(f ), resp. ω1(f ), of irreducible factors, resp. of irreducible
noncyclotomic factors, of f (x) counted without multiplicities in both cases,
satisfy

(i)

ω(f )�

√
ms Log(s + 3)

LogLogms
(ms→ ∞),

(ii) for every ε ∈ (0,1),

ω1(f ) = o (mε
s)(Log(s + 3))1−ε , (ms→ ∞).
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Heuristics by adapted Monte-Carlo method

The bounds given by Schinzel’s Theorem are quite large.

Result (heuristics) :

75 % of the polynomials P ∈ C are irreducible,
i.e. are reduced to their non-reciprocal component.

Remaining cases, found : the other factors are cyclotomic.
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Examples :

P(x) := (−1 + x + x37) + x81 + x140 + x184 + x232 + x285 + x350 + x389

+x450 + x514 + x550 + x590 + x649

a)

-1 -0.5 0.5 1

-1

-0.5

0.5

1

b)

-1 -0.5 0.5 1

-1

-0.5

0.5

1

FIGURE: a) The 37 zeroes of G37(x) =−1 + x + x37, b) The 649 zeroes of
P(x) = G37(x) + . . .+ x649. The lenticulus of roots of P is obtained by a very
slight deformation of the restriction of the lenticulus of roots of G37 to the
angular sector |argz|< π/18, off the unit circle. The other roots
(nonlenticular) of P can be found in a narrow annular neighbourhood of
|z|= 1.
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The lenticulus of roots is a lenticulus of conjugates of the real zero ∈ (0,1) of
C in

Theorem

For any f ∈ C , n ≥ 3, denote by

f (x) = A(x)B(x)C(x) =−1 + x + xn + xm1 + xm2 + . . .+ xms ,

where s ≥ 1, m1−n ≥ n−1, mj+1−mj ≥ n−1 for 1≤ j < s, the factorization
of f where

A is the cyclotomic component,

B the reciprocal noncyclotomic component,

C the nonreciprocal part.

Then C is irreducible.

Cor. : C vanishes on the unique zero of f (x) in (0,1) and does not vanish on
|z|= 1.
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Other examples

a)

-1 -0.5 0.5 1
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b) Re z
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Im
z

-1

-0.8
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-0.2

0
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0.4

0.6

0.8

1 Unit circle

Roots

Sector ±π/18

0.9 1 1.1
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-0.05

0
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0.95 1 1.05

-0.06
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-0.02

0

0.02
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FIGURE: a) Zeroes of G81, b) Zeroes of P(x) =−1 + x + x81 + x165 + x250. On
the right the distribution of the roots of P is zoomed twice in the angular
sector −π/18 < arg(z) < π/18.
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b) Re z
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Im
z
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0.6
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1 Unit circle

Roots

Sector ±π/18
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FIGURE: a) Zeroes of G121, b) Zeroes of f (x) =−1 + x + x121 + x250 + x385.
On the right the distribution of the roots of f is zoomed twice in the angular
sector −π/18 < arg(z) < π/18.
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Links with Renyi dynamical numeration system :

Denote by β > 1 the real number such that

C(β
−1) = 0,

where

P(x) = A(x)B(x)C(x) =−1 + x + xn + xm1 + xm2 + . . .+ xms ,

where s ≥ 1, m1−n ≥ n−1, mj+1−mj ≥ n−1 for 1≤ j < s, the
factorization of P.

Next Lecture : Introduce the β -transformation Tβ and the properties of
the Rényi dynamical systems for varying βs :

([0,1],Tβ )
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