On the solutions of some generalized Lebesgue-Ramanujan-Nagell equations

Gökhan SOYDAN

Department of Mathematics, Bursa Uludağ University Bursa-TÜRKIYE

Workshop on Diophantine Equations and Algebraic Equations, May 2-3, 2023
Department of Mathematics, Savoie Mont Blanc University Chambery-FRANCE
(This is joint work with Elif Kızıldere Mutlu and Maohua Le)

Table of contents

(1) A Modular approach to the generalized Ramanujan-Nagell equation
(a) Motivation
(b) Main result
(0) Preliminaries
(c) The proof of the main result
(2) References

1.a. Motivation

1.a.1. History

- In 1844, E. Catalan conjectured that the equation

$$
\begin{equation*}
x^{m}+1=y^{n}, x, y, m, n \in \mathbb{Z}^{+}, \min \{x, y, m, n\}>1 \tag{1}
\end{equation*}
$$

has only the solution $(x, y, m, n)=(2,3,3,2)$. (This conjecture has been proved by P. Mihǎilescu.)

1.a. Motivation

1.a.1. History

- In 1844, E. Catalan conjectured that the equation

$$
\begin{equation*}
x^{m}+1=y^{n}, x, y, m, n \in \mathbb{Z}^{+}, \min \{x, y, m, n\}>1 \tag{1}
\end{equation*}
$$

has only the solution $(x, y, m, n)=(2,3,3,2)$. (This conjecture has been proved by P. Mihǎilescu.)

- Six years later, V.A. Lebesgue solved (1) for $m \equiv 0(\bmod 2)$, namely, he proved that the equation

$$
x^{2}+1=y^{n}, x, y, n \in \mathbb{Z}^{+}, \min \{x, y, n\}>1
$$

has no solutions (x, y, n).

1.a. Motivation

1.a.1. History

- In 1844, E. Catalan conjectured that the equation

$$
\begin{equation*}
x^{m}+1=y^{n}, x, y, m, n \in \mathbb{Z}^{+}, \min \{x, y, m, n\}>1 \tag{1}
\end{equation*}
$$

has only the solution $(x, y, m, n)=(2,3,3,2)$. (This conjecture has been proved by P. Mihǎilescu.)

- Six years later, V.A. Lebesgue solved (1) for $m \equiv 0(\bmod 2)$, namely, he proved that the equation

$$
x^{2}+1=y^{n}, x, y, n \in \mathbb{Z}^{+}, \min \{x, y, n\}>1
$$

has no solutions (x, y, n).

- Afterwards, T. Nagell solved the equation with the form

$$
\begin{equation*}
x^{2}+D=y^{n}, x, y, n \in \mathbb{Z}^{+}, \operatorname{gcd}(x, y)=1, n>2 \tag{2}
\end{equation*}
$$

where $D=3,4$ and 5 . Therefore, (2) and its generalizations are called the generalized Lebesgue-Nagell equation.

1.a. Motivation

1.a.1. History

- In 1913, S. Ramanujan conjectured that the equation

$$
\begin{equation*}
x^{2}+7=2^{n+2}, x, n \in \mathbb{Z}^{+} \tag{3}
\end{equation*}
$$

has only the solutions $(x, n)=(1,1),(3,2),(5,3),(11,5)$ and (181, 13).

1.a. Motivation

1.a.1. History

- In 1913, S. Ramanujan conjectured that the equation

$$
\begin{equation*}
x^{2}+7=2^{n+2}, x, n \in \mathbb{Z}^{+} \tag{3}
\end{equation*}
$$

has only the solutions $(x, n)=(1,1),(3,2),(5,3),(11,5)$ and (181, 13).

- In 1945, W. Ljunggren proposed the same problem in Norwegian and
T. Nagell first proved it three years later. Therefore, the equation

$$
x^{2}+D= \begin{cases}2^{n+2}, & \text { if } p=2 \tag{4}\\ p^{n}, & \text { if } p \neq 2, n \in \mathbb{Z}^{+}\end{cases}
$$

and its generalizations are called the generalized Ramanujan-Nagell equation.

1.a. Motivation

1.a.1. History

- Some details about the generalized Lebesgue-Ramanujan-Nagell equations can be found in the following survey papers:
(1) F.S. Abu Muriefah and Y. Bugeaud, 2006, Rev. Colombiana Math.
(2) A. Bérczes and I. Pink, 2014, An. St. Univ. Ovidius Constanta.
(3) M.H. Le and G.Soydan, 2020, Survey in Mathematics and its Applications.

1.a. Motivation
 1.a.2. Terai's Conjecture

In 2014, N. Terai proposed the following conjecture:

Conjecture 1

For any k with $k>1$, the equation

$$
\begin{equation*}
x^{2}+(2 k-1)^{y}=k^{z}, x, y, z \in \mathbb{Z}^{+} \tag{5}
\end{equation*}
$$

has only one solution $(x, y, z)=(k-1,1,2)$.

1.a. Motivation
 1.a.3. Earlier results on the conjecture

- (2014) For the case $4 \mid k, N$. Terai used some classical methods to discuss the eq. $x^{2}+(2 k-1)^{y}=k^{z}$ for $k \leq 30$. However, his method does not apply for $k \in\{12,24\}$.

1.a. Motivation
 1.a.3. Earlier results on the conjecture

- (2014) For the case $4 \mid k, N$. Terai used some classical methods to discuss the eq. $x^{2}+(2 k-1)^{y}=k^{z}$ for $k \leq 30$. However, his method does not apply for $k \in\{12,24\}$.
- (2017) M. A. Bennett and N. Billerey used the modular approach to solve the case $k \in\{12,24\}$.

1.a. Motivation
 1.a.3. Earlier results on the conjecture

- (2014) For the case $4 \mid k, N$. Terai used some classical methods to discuss the eq. $x^{2}+(2 k-1)^{y}=k^{z}$ for $k \leq 30$. However, his method does not apply for $k \in\{12,24\}$.
- (2017) M. A. Bennett and N. Billerey used the modular approach to solve the case $k \in\{12,24\}$.
- (2018) M.J. Deng, J. Guo and A.J. Xu verified Conjecture 1 when the case $k \equiv 3(\bmod 4)$ with $3 \leq k \leq 499$.

1.a. Motivation
 1.a.3. Earlier results on the conjecture

- (2014) For the case $4 \mid k, N$. Terai used some classical methods to discuss the eq. $x^{2}+(2 k-1)^{y}=k^{z}$ for $k \leq 30$. However, his method does not apply for $k \in\{12,24\}$.
- (2017) M. A. Bennett and N. Billerey used the modular approach to solve the case $k \in\{12,24\}$.
- (2018) M.J. Deng, J. Guo and A.J. Xu verified Conjecture 1 when the case $k \equiv 3(\bmod 4)$ with $3 \leq k \leq 499$.
- (2020) Y. Fujita and N. Terai verified the conjecture when the cases $2 k-1=3 p^{\ell}$ and $2 k-1=5 p^{\ell}$ with p a prime and ℓ a positive integer.

1.a. Motivation
 1.a.3. Earlier results on the conjecture

- (2014) For the case $4 \mid k, N$. Terai used some classical methods to discuss the eq. $x^{2}+(2 k-1)^{y}=k^{z}$ for $k \leq 30$. However, his method does not apply for $k \in\{12,24\}$.
- (2017) M. A. Bennett and N. Billerey used the modular approach to solve the case $k \in\{12,24\}$.
- (2018) M.J. Deng, J. Guo and A.J. Xu verified Conjecture 1 when the case $k \equiv 3(\bmod 4)$ with $3 \leq k \leq 499$.
- (2020) Y. Fujita and N. Terai verified the conjecture when the cases $2 k-1=3 p^{\ell}$ and $2 k-1=5 p^{\ell}$ with p a prime and ℓ a positive integer.
- Most of solved cases of Conjecture 1 focus on the case $4 \nmid k$, and very little is known in the case $4 \mid k$.

1.b. Main result

In this work, using the modular approach we prove the following result:

Theorem 1 (Mutlu-Le-S, 2022)

If $4 \mid k, 30<k<724$ and $2 k-1$ is an odd prime power, then under the GRH, Conjecture 1 is true.

1.c. Preliminaries
 1.c.1. Modular Approach

- The most important progress in the field of the Diophantine equations has been with Wiles' proof of Fermat's Last Theorem. His proof is based on deep results about Galois representations associated to elliptic curves and modular forms.

1.c. Preliminaries

1.c.1. Modular Approach

- The most important progress in the field of the Diophantine equations has been with Wiles' proof of Fermat's Last Theorem. His proof is based on deep results about Galois representations associated to elliptic curves and modular forms.
- The method of using such results to deal with Diophantine problems, is called the modular approach. After Wiles' proof, the original strategy was strengthened and many mathematicians achieved great success in solving other equations that previously seemed hard.

1.c. Preliminaries

1.c.1. Modular Approach

- The most important progress in the field of the Diophantine equations has been with Wiles' proof of Fermat's Last Theorem. His proof is based on deep results about Galois representations associated to elliptic curves and modular forms.
- The method of using such results to deal with Diophantine problems, is called the modular approach. After Wiles' proof, the original strategy was strengthened and many mathematicians achieved great success in solving other equations that previously seemed hard.
- As a result of these efforts, the generalized Fermat equation

$$
\begin{equation*}
A x^{p}+B y^{q}=C z^{r}, \text { with } 1 / p+1 / q+1 / r<1 \tag{6}
\end{equation*}
$$

where $p, q, r \in \mathbb{Z}_{\geq 2}, A, B, C$ are non-zero integers and x, y, z are unknown integers became a new area of interest.

1.c. Preliminaries

1.c.1. Modular Approach

- Call an integer solution (x, y, z) to such an equation proper if $\operatorname{gcd}(x, y, z)=1$. It was proved that equation

$$
A x^{p}+B y^{q}=C z^{r}, \text { with } 1 / p+1 / q+1 / r<1
$$

has finitely many proper solutions by H . Darmon and A . Granville in 1994. In recent 30 years, several authors considered many cases of the above equations.

1.c. Preliminaries

1.c.1. Modular Approach

- Call an integer solution (x, y, z) to such an equation proper if $\operatorname{gcd}(x, y, z)=1$. It was proved that equation

$$
A x^{p}+B y^{q}=C z^{r}, \text { with } 1 / p+1 / q+1 / r<1
$$

has finitely many proper solutions by H. Darmon and A. Granville in 1994. In recent 30 years, several authors considered many cases of the above equations.

- The following survey papers are good references for the case $A B C=1$:
(1) M.A. Bennett, I. Chen, S. Dahmen and S. Yazdani, Generalized Fermat equations : a miscellany, Int. J. Number Theory, (2015).
(2) M. A. Bennett, P. Mihǎilescu and S. Siksek, The generalized Fermat equation, in Springer volume Open Problems in Mathematics, (2016).

1.c. Preliminaries

1.c.1. Modular Approach

- Call an integer solution (x, y, z) to such an equation proper if $\operatorname{gcd}(x, y, z)=1$. It was proved that equation

$$
A x^{p}+B y^{q}=C z^{r}, \text { with } 1 / p+1 / q+1 / r<1
$$

has finitely many proper solutions by H . Darmon and A . Granville in 1994. In recent 30 years, several authors considered many cases of the above equations.

- The following survey papers are good references for the case $A B C=1$:
(1) M.A. Bennett, I. Chen, S. Dahmen and S. Yazdani, Generalized Fermat equations : a miscellany, Int. J. Number Theory, (2015).
(2) M. A. Bennett, P. Mihǎilescu and S. Siksek, The generalized Fermat equation, in Springer volume Open Problems in Mathematics, (2016).
- One can find the details concerning modular approach in Cohen's book (Chapter 15) and the paper is titled "Modular Approach to Diophantine equations" of Samir Siksek (2012).

1.c. Preliminaries

1.c.2. Bennet-Skinner Strategy: Signature ($n, n, 2$)

- Here we give recipes for signature $(n, n, 2)$ which was firstly described by M.A. Bennett and C. Skinner.

1.c. Preliminaries
 1.c.2. Bennet-Skinner Strategy: Signature $(n, n, 2)$

- Here we give recipes for signature $(n, n, 2)$ which was firstly described by M.A. Bennett and C. Skinner.
- We denote by $\operatorname{rad}(m)$ the radical of $|m|$, i.e. the product of distinct primes dividing m, and by $\operatorname{ord}_{p}(m)$ the largest nonnegative integer k such that p^{k} divides m.

1.c. Preliminaries

1.c.2. Bennet-Skinner Strategy: Signature ($n, n, 2$)

- We always assume that $n \geq 7$ is prime, and a, b, c, A, B and C are nonzero integers with $A a, B b$ and $C c$ pairwise coprime, A and B are n th-power free, C squarefree satisfying

$$
\begin{equation*}
A a^{n}+B b^{n}=C c^{2} \tag{7}
\end{equation*}
$$

1.c. Preliminaries

1.c.2. Bennet-Skinner Strategy: Signature ($n, n, 2$)

- We always assume that $n \geq 7$ is prime, and a, b, c, A, B and C are nonzero integers with $A a, B b$ and $C c$ pairwise coprime, A and B are n th-power free, C squarefree satisfying

$$
\begin{equation*}
A a^{n}+B b^{n}=C c^{2} \tag{7}
\end{equation*}
$$

- We further assume that we are in one of the following situations:
(i) $a b A B C \equiv 1(\bmod 2)$ and $b \equiv-B C(\bmod 4)$.
(ii) $a b \equiv 1(\bmod 2)$ and either $\operatorname{ord}_{2}(B)=1$ or $\operatorname{ord}_{2}(C)=1$.
(iii) $a b \equiv 1(\bmod 2), \operatorname{ord}_{2}(B)=2$ and $C \equiv-b B / 4(\bmod 4)$.
(iv) $a b \equiv 1(\bmod 2), \operatorname{ord}_{2}(B) \in\{3,4,5\}$ and $c \equiv C(\bmod 4)$. (v) $\operatorname{ord}_{2}\left(B b^{n}\right) \geq 6$ and $c \equiv C(\bmod 4)$.

1.c. Preliminaries

1.c.2. Bennet-Skinner Strategy: Signature $(n, n, 2)$

For our eq. we are in case (v) and we will consider the curve

$$
\begin{equation*}
E_{3}(a, b, c): Y^{2}+X Y=X^{3}+\frac{c C-1}{4} X^{2}+\frac{B C b^{n}}{64} X \tag{8}
\end{equation*}
$$

which is defined over \mathbb{Q}. By a lemma of Bennett-Skinner, the conductor of the curve $E=E_{3}(a, b, c)$ is given by

$$
\begin{equation*}
N(E)=2^{\alpha} \cdot C^{2} \cdot \operatorname{rad}(a b A B) \tag{9}
\end{equation*}
$$

where

$$
\alpha= \begin{cases}-1 & \text { if } i=3, \text { case }(v) \text { and } \operatorname{ord}_{2}\left(B b^{n}\right)=6 \\ 0 & \text { if } i=3, \text { case }(v) \text { and } \operatorname{ord}_{2}\left(B b^{n}\right) \geq 7\end{cases}
$$

1.d. The proof of the main result

1.d.1. Some Lemmas

Here and below, we assume that (x, y, z) is a solution of the equation

$$
\begin{equation*}
x^{2}+(2 k-1)^{y}=k^{z}, x, y, z \in \mathbb{Z}^{+} \tag{10}
\end{equation*}
$$

with $(x, y, z) \neq(k-1,1,2)$. Then, by (10), we can get $z>y$ immediately. Obviously, if we can prove that the solution (x, y, z) does not exist, then Conjecture 1 is true. The following two lemmas are basic properties on the solution (x, y, z).

1.d. The proof of the main result

1.d.1. Some Lemmas

Lemma 2 (Mutlu-Le-S, 202)

Suppose $4 \mid k$. Then $2 \nmid y$.

1.d. The proof of the main result

1.d.1. Some Lemmas

Lemma 2 (Mutlu-Le-S, 202)

Suppose $4 \mid k$. Then $2 \nmid y$.

Proof.

If $2 \mid y$ then (5) implies $x^{2}+1 \equiv 0(\bmod 4)$, impossible.
1.d. The proof of the main result

1.d.1. Some Lemmas

Lemma 2 (Mutlu-Le-S, 202)

Suppose $4 \mid k$. Then $2 \nmid y$.

Proof.

If $2 \mid y$ then (5) implies $x^{2}+1 \equiv 0(\bmod 4)$, impossible.

Lemma 3 (Mutlu-Le-S, 2022)

If $2 k-1$ is an odd prime power, then $2 \nmid z$.
1.d. The proof of the main result

1.d.1. Some Lemmas

Lemma 2 (Mutlu-Le-S, 202)

Suppose $4 \mid k$. Then $2 \nmid y$.

Proof.

If $2 \mid y$ then (5) implies $x^{2}+1 \equiv 0(\bmod 4)$, impossible.

Lemma 3 (Mutlu-Le-S, 2022)

If $2 k-1$ is an odd prime power, then $2 \nmid z$.

Proof.

See Lemma 2.6 of Deng, Guo and Xu.

1.d. The proof of the main result

1.d.1. Some Lemmas

Lemma 4

Let $F(t)=t+a / t$ be a function of the real variable t, where a is a constant with $a>1$. Then $F(t)$ is a strictly decreasing function for $1 \leq t<\sqrt{a}$.

Proof.

Since $F^{\prime}(t)=1-a / t^{2}<0$ for $1 \leq t<\sqrt{a}$, where $F^{\prime}(t)$ is the derivative of $F(t)$, we obtain the lemma immediately.

1.d. The proof of the main result

1.d.1. Some Lemmas

Lemma 5 (Mutlu-Le-S, 2022)

If k is a power of 2 and $4 \mid k$, then Conjecture 1 is true.

1.d. The proof of the main result

1.d.1. Some Lemmas

Lemma 5 (Mutlu-Le-S, 2022)

If k is a power of 2 and $4 \mid k$, then Conjecture 1 is true.

Proof.

The proof is based on Lemmas 2, 4 and a theorem of [M.H. Le, JNT-1995]
1.d. The proof of the main result

1.d.1. Some Lemmas

Lemma 5 (Mutlu-Le-S, 2022)

If k is a power of 2 and $4 \mid k$, then Conjecture 1 is true.

Proof.

The proof is based on Lemmas 2, 4 and a theorem of [M.H. Le, JNT-1995]

Lemma 6 (Mutlu-Le-S, 2022)

If $4 \mid k, 2 k-1$ is an odd prime power and k is a square, then Conjecture 1 is true.
1.d. The proof of the main result

1.d.1. Some Lemmas

Lemma 5 (Mutlu-Le-S, 2022)

If k is a power of 2 and $4 \mid k$, then Conjecture 1 is true.

Proof.

The proof is based on Lemmas 2, 4 and a theorem of [M.H. Le, JNT-1995]

Lemma 6 (Mutlu-Le-S, 2022)

If $4 \mid k, 2 k-1$ is an odd prime power and k is a square, then Conjecture 1 is true.

Proof.

The proof is elementary and it is based on Lemma 2.

1.d. The proof of the main result

1.d.2. The case $y \geq 7$ prime

For any fixed positive integers m and n with $n>1$, there exist unique positive integers f and g such that

$$
\begin{equation*}
m=f g^{n}, f \text { is } n \text { th-power free. } \tag{11}
\end{equation*}
$$

The positive integer f is called the n th-power free part of m, and denoted by $f(m)$. Similarly, g is denoted by $g(m)$. Obviously, by (11), if $2 \mid m$, then we have

$$
\begin{equation*}
\operatorname{ord}_{2}(m)=\operatorname{ord}_{2}(f(m))+n \operatorname{ord}_{2}(g(m)), 0 \leq \operatorname{ord}_{2}(f(m))<n . \tag{12}
\end{equation*}
$$

1.d. The proof of the main result

1.d.2. The case $y \geq 7$ prime

Let k be a positive integer with $4 \mid k$. Suppose that $y \geq 7$ is prime. Then equation $x^{2}+(2 k-1)^{y}=k^{z}$ becomes

$$
\begin{equation*}
(-1) \cdot(2 k-1)^{y}+k^{z}=x^{2} . \tag{13}
\end{equation*}
$$

Then, the ternary equation $A x^{p}+B y^{q}=C z^{r}$ can be obtained from (13) by the substitution
$A=-1, a=2 k-1, B=f\left(k^{z}\right), b=g\left(k^{z}\right), C=1, c=(-1)^{(x-1) / 2} x$,
where $f\left(k^{z}\right)$ and $g\left(k^{z}\right)$ are defined as in (11).

1.d. The proof of the main result

1.d.2. The case $y \geq 7$ prime

Let k be a positive integer with $4 \mid k$. Suppose that $y \geq 7$ is prime. Then equation $x^{2}+(2 k-1)^{y}=k^{z}$ becomes

$$
\begin{equation*}
(-1) \cdot(2 k-1)^{y}+k^{z}=x^{2} . \tag{13}
\end{equation*}
$$

Then, the ternary equation $A x^{p}+B y^{q}=C z^{r}$ can be obtained from (13) by the substitution
$A=-1, a=2 k-1, B=f\left(k^{z}\right), b=g\left(k^{z}\right), C=1, c=(-1)^{(x-1) / 2} x$,
where $f\left(k^{z}\right)$ and $g\left(k^{z}\right)$ are defined as in (11).

Lemma 7 (Mutlu-Le-S, 202?)

If $4 \mid k$, then b, B and C in (14) satisfy the case $(v)\left[\operatorname{ord}_{2}\left(B b^{n}\right) \geq 6\right.$ and $c \equiv C(\bmod 4)]$ with $\operatorname{ord}_{2}\left(B b^{n}\right)>6$.

1.d. The proof of the main result

1.d.2. The case $y \geq 7$ prime

- By the strategy of Bennett-Skinner, we are interested in the following elliptic curve (called a Frey curve)

$$
\begin{equation*}
E_{3}: Y^{2}+X Y=X^{3}+\frac{(-1)^{(x-1) / 2} x-1}{4} X^{2}+\frac{k^{z}}{64} X \tag{15}
\end{equation*}
$$

1.d. The proof of the main result

1.d.2. The case $y \geq 7$ prime

- By the strategy of Bennett-Skinner, we are interested in the following elliptic curve (called a Frey curve)

$$
\begin{equation*}
E_{3}: Y^{2}+X Y=X^{3}+\frac{(-1)^{(x-1) / 2} x-1}{4} X^{2}+\frac{k^{z}}{64} X \tag{15}
\end{equation*}
$$

- The conductor of this elliptic curve is given by

$$
\begin{equation*}
N\left(E_{3}\right)=\operatorname{rad}(2 k-1) \cdot \operatorname{rad}(k) \tag{16}
\end{equation*}
$$

1.d. The proof of the main result

1.d.2. The case $y \geq 7$ prime

- By the strategy of Bennett-Skinner, we are interested in the following elliptic curve (called a Frey curve)

$$
\begin{equation*}
E_{3}: Y^{2}+X Y=X^{3}+\frac{(-1)^{(x-1) / 2} x-1}{4} X^{2}+\frac{k^{z}}{64} X \tag{15}
\end{equation*}
$$

- The conductor of this elliptic curve is given by

$$
\begin{equation*}
N\left(E_{3}\right)=\operatorname{rad}(2 k-1) \cdot \operatorname{rad}(k) \tag{16}
\end{equation*}
$$

- Note that when $k=720$, one gets that $N\left(E_{3}\right)=43170$ and $2 k-1=1439$ is prime. But when $k=724$, one obtains $N\left(E_{3}\right)=523.814$, outside the range of the Cremona elliptic curve database where the upper bound for conductors is 500.000 (in November 2021).

1.d. The proof of the main result

1.d.2. The case $y \geq 7$ prime

- By the strategy of Bennett-Skinner, we are interested in the following elliptic curve (called a Frey curve)

$$
\begin{equation*}
E_{3}: Y^{2}+X Y=X^{3}+\frac{(-1)^{(x-1) / 2} x-1}{4} X^{2}+\frac{k^{z}}{64} X \tag{15}
\end{equation*}
$$

- The conductor of this elliptic curve is given by

$$
\begin{equation*}
N\left(E_{3}\right)=\operatorname{rad}(2 k-1) \cdot \operatorname{rad}(k) \tag{16}
\end{equation*}
$$

- Note that when $k=720$, one gets that $N\left(E_{3}\right)=43170$ and $2 k-1=1439$ is prime. But when $k=724$, one obtains $N\left(E_{3}\right)=523.814$, outside the range of the Cremona elliptic curve database where the upper bound for conductors is 500.000 (in November 2021).
- We therefore restrict attention to $30<k \leq 720$.

1.d. The proof of the main result

1.d.2. The case $y \geq 7$ prime

- Using Lemmas 5 and 6 , we can exclude the cases $k=2^{r_{0}}$ with $r_{0}=6$ and $k=\ell^{2}$ with $\ell \in\{6,8,10,18,22,24\}$. This leaves 50 values of k to consider. We proceed as follows.

1.d. The proof of the main result

1.d.2. The case $y \geq 7$ prime

- Using Lemmas 5 and 6 , we can exclude the cases $k=2^{r_{0}}$ with $r_{0}=6$ and $k=\ell^{2}$ with $\ell \in\{6,8,10,18,22,24\}$. This leaves 50 values of k to consider. We proceed as follows.
- For a given k we compute by the formula the conductor of the Frey curve

$$
\begin{equation*}
E_{3}: Y^{2}+X Y=X^{3}+\frac{(-1)^{(x-1) / 2} x-1}{4} X^{2}+\frac{k^{z}}{64} X \tag{17}
\end{equation*}
$$

Using Cremona's elliptic curve database we obtain a list of isomorphism classes of elliptic curves for that conductor.

1.d. The proof of the main result

1.d.2. The case $y \geq 7$ prime

- Using Lemmas 5 and 6 , we can exclude the cases $k=2^{r_{0}}$ with $r_{0}=6$ and $k=\ell^{2}$ with $\ell \in\{6,8,10,18,22,24\}$. This leaves 50 values of k to consider. We proceed as follows.
- For a given k we compute by the formula the conductor of the Frey curve

$$
\begin{equation*}
E_{3}: Y^{2}+X Y=X^{3}+\frac{(-1)^{(x-1) / 2} x-1}{4} X^{2}+\frac{k^{z}}{64} X \tag{17}
\end{equation*}
$$

Using Cremona's elliptic curve database we obtain a list of isomorphism classes of elliptic curves for that conductor.

- In each class, we must determine whether there exists a model consistent with the model at (17).

1.d. The proof of the main result

1.d.2. The case $y \geq 7$ prime

- For example, when $k=192$ and the conductor is 2298 , the isomorphism class of the curve labelled 2298.h4, [1, 0, 0, -184, 1088], contains the curve $[1,-48,0,576,0]$ (note that this fails to provide a solution to our problem, because the corresponding values of y, z, equal 1,2 , not allowed).

1.d. The proof of the main result

1.d.2. The case $y \geq 7$ prime

- For example, when $k=192$ and the conductor is 2298 , the isomorphism class of the curve labelled 2298.h4, [1, 0, 0, -184, 1088], contains the curve $[1,-48,0,576,0]$ (note that this fails to provide a solution to our problem, because the corresponding values of y, z, equal 1,2 , not allowed).
- Since our Frey curve has point $(0,0)$ of order 2 , it is only necessary to consider isomorphism classes determined by curves with nontrivial 2-torsion.

1.d. The proof of the main result

1.d.2. The case $y \geq 7$ prime

- For example, when $k=192$ and the conductor is 2298 , the isomorphism class of the curve labelled 2298.h4, [1, 0, 0, -184, 1088], contains the curve $[1,-48,0,576,0]$ (note that this fails to provide a solution to our problem, because the corresponding values of y, z, equal 1,2 , not allowed).
- Since our Frey curve has point $(0,0)$ of order 2 , it is only necessary to consider isomorphism classes determined by curves with nontrivial 2-torsion.
- Suppose a Cremona class representative has nontrivial 2-torsion point T_{0}. To obtain an isomorphic curve of the form (15) we must take the transformation mapping T_{0} to (0,0), and then test the resulting curve to see whether the X-coefficient is of the form $\frac{k^{z}}{64}$. This was programmed into Magma.

1.d. The proof of the main result

1.d.2. The case $y \geq 7$ prime

- Resulting curves with corresponding $(y, z)=(1,2)$ are not allowed, and only one other curve resulted, namely $[1,733 / 4,0,33 / 16,0]$ when $k=132$ with $z=2$. But this does not provide a solution to our problem because there is no corresponding value of x (or y). Finally, thus, we deduce that the eq. $x^{2}+(2 k-1)^{y}=k^{z}$ has no solutions where $y \geq 7$ and $30<k \leq 720$.

1.d. The proof of the main result

1.d.3. The case $y=3$ or $y=5$

- Here we solve the Diophantine equations

$$
\begin{equation*}
x^{2}+(2 k-1)^{3}=k^{z}, z>3 \text { odd } \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2}+(2 k-1)^{5}=k^{z}, z>5 \text { odd } \tag{19}
\end{equation*}
$$

where $4 \mid k, 30<k<724$ and $2 k-1$ is an odd prime power.

1.d. The proof of the main result

1.d.3. The case $y=3$ or $y=5$

- Write in the eq. $x^{2}+(2 k-1)^{y}=k^{z}, y=6 A+i, z=3 B+j$ where $i=3$ or 5 and $0 \leq j \leq 2, A, B \geq 0$. Since $2 k-1$ is an odd prime power, we have $2 k-1=p^{r}$, where p is an odd prime and r is a positive integer. Then we see that

$$
\left(\frac{k^{B+j}}{(2 k-1)^{2 A}}, \frac{x k^{j}}{(2 k-1)^{3 A}}\right)
$$

is an S-integral point (U, V) on the elliptic curve

$$
\mathcal{E}_{i j k}: V^{2}=U^{3}-(2 k-1)^{i} k^{2 j},
$$

where $S=\{p\}, 4 \mid k, 30<k<724$ and $2 k-1$ is a power of p, in view of the restriction $\operatorname{gcd}(k, x)=1$.

1.d. The proof of the main result

1.d.3-i. S-Integral Points

- A practical method for the explicit computation of all S-integral points on a Weierstrass elliptic curve has been developed by A. Pethő, H.G. Zimmer, J. Gebel and E. Herrmann and has been implemented in Magma. The relevant routine SIntegralPoints worked without problems for all triples (i, j, k) except for

$$
\begin{aligned}
& (i, j, k) \in\{(5,2,96),(5,1,120),(5,2,156),(5,2,180),(5,2,192), \\
& (5,2,220),(3,1,232),(5,0,232),(5,2,232),(5,0,240),(5,2,240), \\
& (5,2,244),(5,0,304),(5,1,304),(5,2,304),(3,2,316),(5,0,316), \\
& (5,2,316),(5,2,324),(5,0,360),(5,1,364),(5,2,364),(3,2,372), \\
& (5,1,372),(5,2,372),(5,2,376),(3,1,412),(3,2,412),(5,0,412), \\
& (5,0,420),(5,0,432),(5,1,432),(3,2,444),(5,1,444),(5,2,444), \\
& (5,0,456),(5,1,456),(5,2,460),(5,1,492),(5,1,516),(5,2,516),
\end{aligned}
$$

1.d. The proof of the main result

1.d.3-i S-Integral Points

$$
\begin{gathered}
(3,1,520),(5,0,520),(5,2,520),(5,2,532),(5,1,544),(5,2,552), \\
(3,2,612),(5,0,612),(5,1,612),(5,2,612),(5,1,616),(5,0,640), \\
(5,2,640),(3,2,652),(5,2,652),(5,2,660),(3,2,664)(5,0,664), \\
(5,2,664),(5,1,684),(5,0,700),(5,1,700),(5,2,700),(5,0,712), \\
(5,0,720),(5,1,720)\}
\end{gathered}
$$

- The non-exceptional triples (i, j, k) do not give any positive integer solution to equation $x^{2}+(2 k-1)^{3}=k^{z}$ or $x^{2}+(2 k-1)^{5}=k^{z}$.
1.d. The proof of the main result

1. d. 3-ii. The elementary approach to some exceptional triples

Thirty-eight of the above exceptional triples have been solved using an elementary approach, as follows.

Lemma 8 (Mutlu-Le-S, 202?)

If $k \equiv 3$ or $4(\bmod 5)$, then the equation

$$
x^{2}+(2 k-1)^{5}=k^{z}, z>5 \text { odd },
$$

has no solutions (x, z), where $4 \mid k, 30<k<724$ and $2 k-1$ is an odd prime power.
1.d. The proof of the main result

1. d. 3-ii. The elementary approach to some exceptional triples

Thirty-eight of the above exceptional triples have been solved using an elementary approach, as follows.

Lemma 8 (Mutlu-Le-S, 202?)

If $k \equiv 3$ or $4(\bmod 5)$, then the equation

$$
x^{2}+(2 k-1)^{5}=k^{z}, z>5 \text { odd },
$$

has no solutions (x, z), where $4 \mid k, 30<k<724$ and $2 k-1$ is an odd prime power.

Proof.

The proof is based on congruences and Jacobi symbol.

1.d. The proof of the main result

1. d. 3-ii. The elementary approach to some exceptional triples

Lemma 9 (Mutlu-Le-S, 202?)

If $2 \mid k$ and $k+1$ has an odd prime divisor p with $p \equiv \pm 3(\bmod 8)$, then the eq.

$$
x^{2}+(2 k-1)^{5}=k^{z}, z>5 \text { odd },
$$

has no solutions (x, z), where $4 \mid k, 30<k<724$ and $2 k-1$ is an odd prime power.
1.d. The proof of the main result

1. d. 3-ii. The elementary approach to some exceptional triples

Lemma 9 (Mutlu-Le-S, 202?)

If $2 \mid k$ and $k+1$ has an odd prime divisor p with $p \equiv \pm 3(\bmod 8)$, then the eq.

$$
x^{2}+(2 k-1)^{5}=k^{z}, z>5 \text { odd, }
$$

has no solutions (x, z), where $4 \mid k, 30<k<724$ and $2 k-1$ is an odd prime power.

Proof.

The proof is based on congruences and Jacobi symbol.

1.d. The proof of the main result

1. d. 3-ii. The elementary approach to some exceptional triples

Notice that if $2 \mid k$ and every odd prime divisor p of $k+1$ satisfies $p \equiv \pm 1$ $(\bmod 8)$, then either $k+1 \equiv 1(\bmod 8)$ or $k+1 \equiv-1(\bmod 8)$. Hence, by Lemma 9, we can obtain the following lemma immediately.

Lemma 10 (Mutlu-Le-S, 202?)

If $k \equiv 2$ or $4(\bmod 8)$, then the eq. $x^{2}+(2 k-1)^{5}=k^{z}$ has no solutions (x, z).
1.d. The proof of the main result

1. d. 3-ii. The elementary approach to some exceptional triples

Notice that if $2 \mid k$ and every odd prime divisor p of $k+1$ satisfies $p \equiv \pm 1$ $(\bmod 8)$, then either $k+1 \equiv 1(\bmod 8)$ or $k+1 \equiv-1(\bmod 8)$. Hence, by Lemma 9, we can obtain the following lemma immediately.

Lemma 10 (Mutlu-Le-S, 202?)

If $k \equiv 2$ or $4(\bmod 8)$, then the eq. $x^{2}+(2 k-1)^{5}=k^{z}$ has no solutions (x, z).

Lemma 11 (Mutlu-Le-S, 202?)

For $k \in\{120,156,180,220,244,304,316,324,360,364,372,376$, $412,420,444,460,492,516,532,544,612,652,660,664,684,700\}$, the eq. $x^{2}+(2 k-1)^{5}=k^{z}$ has no solutions (x, z).

1.d. The proof of the main result

1. d. 3-ii. The elementary approach to some exceptional triples

Proof.

By Lemmas 8, 9 and 10, the eq. $x^{2}+(2 k-1)^{5}=k^{z}$ has no solutions (x, z) for $k \in\{244,304,324,364,444,544,664,684\}, k \in\{120,360,376\}$ and $k \in\{156,180,220,316,372,412,420,460,492,516,532,612,652$, $660,700\}$, respectively.

1.d. The proof of the main result

1. d. 3 -iii. The case $r=0$

- Denote the rank of the elliptic curve $\mathcal{E}_{i j k}$ by r. Here, we seperate the above remaining twentynine exceptional triples (i, j, k) depending on whether $r=0, r=1$ and $r=2$, respectively.

1.d. The proof of the main result

1. d. 3 -iii. The case $r=0$

- Denote the rank of the elliptic curve $\mathcal{E}_{i j k}$ by r. Here, we seperate the above remaining twentynine exceptional triples (i, j, k) depending on whether $r=0, r=1$ and $r=2$, respectively.
- For the triples $(i, j, k) \in\{(5,1,456),(5,2,552),(5,1,616)$, $(3,2,652),(5,1,720)\}$, there are no rational points (so no S-integral points) on $\mathcal{E}_{i j k}$ under the assumption that $r=0$ which is proved by descent algorithms of Magma.

1.d. The proof of the main result

1. d. 3-iv. The case $r=1$

- For each remaining triples (i, j, k) (in total twentyfour triples), the rank of $\mathcal{E}_{i j k}$ is 1 , i.e. $r=1$ except for $(i, j, k)=(3,2,664)$. We performed two-, four- and eight-descent algorithms or two-, four-, three- and twelve-descent algorithms for these triples (These algorithms were improved by J. Cremona, S. Donnelly, T. Fisher, J. Merriman, C. O'Neil, S. Siksek, D. Simon, N. Smart, S. Stamminger, M. Stoll, \cdots).

1.d. The proof of the main result

1. d. 3 -iv. The case $r=1$

- For each remaining triples (i, j, k) (in total twentyfour triples), the rank of $\mathcal{E}_{i j k}$ is 1 , i.e. $r=1$ except for $(i, j, k)=(3,2,664)$. We performed two-, four- and eight-descent algorithms or two-, four-, three- and twelve-descent algorithms for these triples (These algorithms were improved by J. Cremona, S. Donnelly, T. Fisher, J. Merriman, C. O'Neil, S. Siksek, D. Simon, N. Smart, S. Stamminger, M. Stoll, ...).
- Since Magma found a generator for each of them, it was succesfull to show non-existence of S-integral points on $\mathcal{E}_{i j k}$ for the exceptional twentythree triples.

1.d. The proof of the main result

1. d. 3 -iv. The case $r=1$

- The rank 1 curves frequently have generators of large height. We can estimate the height of a generator in advance using the Gross-Zagier formula, as for example used by A. Bremner in treating the family of curves $y^{2}=x\left(x^{2}+p\right)$.

1.d. The proof of the main result

```
1. d. 3-iv. The case r=1
```

- The rank 1 curves frequently have generators of large height. We can estimate the height of a generator in advance using the Gross-Zagier formula, as for example used by A. Bremner in treating the family of curves $y^{2}=x\left(x^{2}+p\right)$.
- Having an estimate of the height in advance tells us whether it is likely that standard descent arguments, as programmed into Magma, will be successfull in finding the generator.

```
1. d. 3-iv. The case r=1
```

- The rank 1 curves frequently have generators of large height. We can estimate the height of a generator in advance using the Gross-Zagier formula, as for example used by A. Bremner in treating the family of curves $y^{2}=x\left(x^{2}+p\right)$.
- Having an estimate of the height in advance tells us whether it is likely that standard descent arguments, as programmed into Magma, will be successfull in finding the generator.
- For twentythree curves we are considering here, Magma was able to compute generators for all cases, using a combination of three-, four-, eight-, and twelve-descent algorithms.

1.d. The proof of the the main result

1. d. 3-v. The case $r=2$

- The single instance of rank 2 was at $(i, j, k)=(3,2,664)$. Magma found only S-integral point (6435758912:516297057335360:1) on the corresponding curve under the assumption that $1 \leq r \leq 2$ and its generator (402234932: $8067141520865: 1$).

1.d. The proof of the the main result

1. d. 3-v. The case $r=2$

- The single instance of rank 2 was at $(i, j, k)=(3,2,664)$. Magma found only S-integral point (6435758912:516297057335360:1) on the corresponding curve under the assumption that $1 \leq r \leq 2$ and its generator (402234932: $8067141520865: 1$).
- By eight-descent algorithm, we found two independent points which are generators. So, it is confirmed that $r=2$ and this curve has only S-integral point (6435758912:516297057335360:1). But it does not give any positive integer solution to equation $x^{2}+(2 k-1)^{3}=k^{z}$.
- To sum up, the main result is proved.

2. An elementary approach to the generalized Ramanujan-Nagell equation

Let k be a fixed positive integer with $k>1$. Here, using various elementary methods in number theory, we give certain criterions which can make the equation

$$
\begin{equation*}
x^{2}+(2 k-1)^{y}=k^{z} \tag{20}
\end{equation*}
$$

to have no positive integer solutions (x, y, z) with $y \in\{3,5\}$. These results make up the defiency of the modular approach when applied to the above equation.

2. An elementary approach to the generalized Ramanujan-Nagell equation
 2.a. Main results

Theorem 12 (Mutlu-Le-S, 202?)

If $(2 k-1)$ has a divisor d with $d \equiv \pm 3(\bmod 8)$, then the eq. $x^{2}+(2 k-1)^{y}=k^{z}$ has no solutions (x, y, z) with $y \in\{3,5\}$.

2. An elementary approach to the generalized Ramanujan-Nagell equation
 2.a. Main results

For any sufficiently large positive integer N, let N_{0} denote the number of positive integers k which satisfy the assumption of Theorem 12 with $1 \leq k \leq N$. Then we have

$$
\lim _{N \rightarrow \infty} \frac{N_{0}}{N} \sim 1-\prod_{p}\left(1-\frac{1}{p}\right)(p \text { is prime with } p \equiv \pm 3 \quad(\bmod 8))
$$

It implies that there exist almost all positive integers k can make $x^{2}+(2 k-1)^{y}=k^{z}$ has no solutions (x, y, z) with $y \in\{3,5\}$.

2. An elementary approach to the generalized

Ramanujan-Nagell equation

2.a. Main results

For any sufficiently large positive integer N, let N_{0} denote the number of positive integers k which satisfy the assumption of Theorem 12 with $1 \leq k \leq N$. Then we have

$$
\lim _{N \rightarrow \infty} \frac{N_{0}}{N} \sim 1-\prod_{p}\left(1-\frac{1}{p}\right)(\mathrm{p} \text { is prime with } p \equiv \pm 3 \quad(\bmod 8))
$$

It implies that there exist almost all positive integers k can make $x^{2}+(2 k-1)^{y}=k^{z}$ has no solutions (x, y, z) with $y \in\{3,5\}$.

Theorem 13 (Mutlu-Le-S, 202?)

If k is a square, then the eq. $x^{2}+(2 k-1)^{y}=k^{z}$ has no solutions (x, y, z) with $y \in\{3,5\}$.

2. An elementary approach to the generalized

 Ramanujan-Nagell equation2.a. Main results

Theorem 14 (Mutlu-Le-S, 202?)

If k is not a square, and (x, y, z) is a solution of the eq.
$x^{2}+(2 k-1)^{y}=k^{z}$ with $y \in\{3,5\}$, then $2 \nmid z$ and

$$
\begin{gathered}
y=Z_{1} t, t \in \mathbb{Z}^{+} \\
x+k^{(z-1) / 2} \sqrt{k}=\left(X_{1}+\lambda Y_{1} \sqrt{k}\right)^{t}(u+v \sqrt{k}), \lambda \in\{1,-1\},
\end{gathered}
$$

where X_{1}, Y_{1}, Z_{1} are positive integers such that

$$
X_{1}^{2}-k Y_{1}^{2}=(-(2 k-1))^{Z_{1}}, \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1, Z_{1} \mid h(4 k)
$$

and

$$
1<\left|\frac{X_{1}+Y_{1} \sqrt{k}}{X_{1}-Y_{1} \sqrt{k}}\right|<u_{1}+v_{1} \sqrt{k},
$$

2. An elementary approach to the generalized Ramanujan-Nagell equation
 2.a. Main results

where $h(4 k)$ is the class number of binary quadratic primitive forms with discriminant $4 k,(u, v)$ is a solution of Pell's equation

$$
\begin{equation*}
u^{2}-k v^{2}=1, u, v \in \mathbb{Z} \tag{21}
\end{equation*}
$$

and $\left(u_{1}, v_{1}\right)$ is the least solution of (21).

2. An elementary approach to the generalized

Ramanujan-Nagell equation

Let $\mathbb{Z}[t]$ denote the set of all the polynomials of indeterminate t with integer coefficients. It is a well known fact that if $F(t) \in \mathbb{Z}[t]$ which leading coefficient is positive, then there exist positive integers m which can make

$$
\begin{equation*}
F(t) \in \mathbb{Z}^{+}, t \in \mathbb{Z}^{+}, t \geq m \tag{22}
\end{equation*}
$$

Therefore, we may use the notation $m(F(t))$ to represent the least value of positive integers m with (22).

Lemma 15

Let $F(t)=t+a / t$ be a function of the real variable t, where a is a constant with $a>1$. Then $F(t)$ is a strictly decreasing function for $1 \leq t<\sqrt{a}$.

2. An elementary approach to the generalized Ramanujan-Nagell equation
 2.b. Preliminaries

Proof.

Since $F^{\prime}(t)=1-a / t^{2}<0$ for $1 \leq t<\sqrt{a}$, where $F^{\prime}(t)$ is the derivative of $F(t)$, we obtain the lemma immediately.
2. An elementary approach to the generalized Ramanujan-Nagell equation
2.b. Preliminaries

Proof.

Since $F^{\prime}(t)=1-a / t^{2}<0$ for $1 \leq t<\sqrt{a}$, where $F^{\prime}(t)$ is the derivative of $F(t)$, we obtain the lemma immediately.

Lemma 16 (Mutlu-Le-S, 202?)

Let $F(t)=t^{2 n}-a_{2 n-1} t^{2 n-1}-\cdots-a_{0} \in \mathbb{Z}[t]$, where n is a positive integer. If there exist $G(t), R(t) \in \mathbb{Z}[t]$ such that

$$
\begin{equation*}
F(t)=(G(t))^{2}+R(t) \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
& G(t)=t^{n}-b_{n-1} t^{n-1}-\cdots-b_{0}, R(t)=r_{\ell} t^{\ell}-r_{\ell-1} t^{\ell-1} \tag{24}\\
& -\cdots-r_{0}, r_{\ell} \neq 0, \ell<n
\end{align*}
$$

2. An elementary approach to the generalized

 Ramanujan-Nagell equation2.b. Preliminaries

cont.

then the equation

$$
\begin{equation*}
X^{2}=F(Y), X, Y \in \mathbb{Z}^{+} \tag{25}
\end{equation*}
$$

has no solutions (X, Y) with $Y \geq Y_{0}$, where

$$
Y_{0}= \begin{cases}\max \{m(G(t)), m(R(t)), m(2 G(t)-R(t))\}, & \text { if } r_{\ell}>0 \tag{26}\\ \max \{m(G(t)), m(-R(t)), m(2 G(t)+R(t)-1)\}, & \text { if } r_{\ell}<0\end{cases}
$$

2. An elementary approach to the generalized Ramanujan-Nagell equation
2.b. Preliminaries

Lemma 17 (Mutlu-Le-S, 202?)

Each of the following equations has no solutions (X, Y).

$$
\begin{gather*}
X^{2}=Y^{4}-8 Y^{3}+12 Y^{2}-6 Y+1, \quad X, Y \in \mathbb{Z}^{+} \tag{27}\\
X^{2}=Y^{6}-8 Y^{3}+12 Y^{2}-6 Y+1, \quad X, Y \in \mathbb{Z}^{+} \tag{28}\\
X^{2}=Y^{6}-32 Y^{5}+80 Y^{4}-80 Y^{3}+40 Y^{2}-10 Y+1, \quad X, Y \in \mathbb{Z}^{+} \tag{29}\\
X^{2}=Y^{8}-32 Y^{5}+80 Y^{4}-80 Y^{3}+40 Y^{2}-10 Y+1, \quad X, Y \in \mathbb{Z}^{+} \tag{30}\\
X^{2}=Y^{10}-8 Y^{6}+12 Y^{4}-6 Y^{2}+1, \quad X, Y \in \mathbb{Z}^{+} \tag{31}
\end{gather*}
$$

2. An elementary approach to the generalized

 Ramanujan-Nagell equation2.b. Preliminaries

cont.

$$
\begin{align*}
& X^{2}=Y^{10}-32 Y^{5}+80 Y^{4}-80 Y^{3}+40 Y^{2}-10 Y+1, \quad X, Y \in \mathbb{Z}^{+} \\
& X^{2}=Y^{14}-32 Y^{10}+80 Y^{8}-80 Y^{6}+40 Y^{4}-10 Y^{2}+1, \quad X, Y \in \mathbb{Z}^{+} . \tag{33}\\
& X^{2}=Y^{18}-32 Y^{10}+80 Y^{8}-80 Y^{6}+40 Y^{4}-10 Y^{2}+1, \quad X, Y \in \mathbb{Z}^{+} . \tag{34}
\end{align*}
$$

2. An elementary approach to the generalized

 Ramanujan-Nagell equation2.b. Preliminaries

cont.

$$
\begin{align*}
& X^{2}=Y^{10}-32 Y^{5}+80 Y^{4}-80 Y^{3}+40 Y^{2}-10 Y+1, \quad X, Y \in \mathbb{Z}^{+} . \tag{32}\\
& X^{2}=Y^{14}-32 Y^{10}+80 Y^{8}-80 Y^{6}+40 Y^{4}-10 Y^{2}+1, \quad X, Y \in \mathbb{Z}^{+} . \tag{33}\\
& X^{2}=Y^{18}-32 Y^{10}+80 Y^{8}-80 Y^{6}+40 Y^{4}-10 Y^{2}+1, \quad X, Y \in \mathbb{Z}^{+} . \tag{34}
\end{align*}
$$

Proof.

The proof is based on Lemma 16.

2. An elementary approach to the generalized Ramanujan-Nagell equation
 2.b. Preliminaries

Lemma 18 (Mutlu-Le-S, 202?)

If (x, y, z) is a solution of the eq. $x^{2}+(2 k-1)^{y}=k^{z}$ with $y \in\{3,5\}$, then $2 \nmid z$.
2. An elementary approach to the generalized Ramanujan-Nagell equation
2.b. Preliminaries

Lemma 18 (Mutlu-Le-S, 202?)

If (x, y, z) is a solution of the eq. $x^{2}+(2 k-1)^{y}=k^{z}$ with $y \in\{3,5\}$, then $2 \nmid z$.

Proof.

The proof is based on Lemmas 15 and 17

2. An elementary approach to the generalized
 Ramanujan-Nagell equation
 2.b. Preliminaries

- Let D be a fixed nonsquare positive integer, and let $h(4 D)$ denote the class number of binary quadratic primitive forms with discriminant $4 D$. Further let K be a fixed odd integer with $|K|>1$ and $\operatorname{gcd}(D, K)=1$. It is well known that Pell's equation

$$
\begin{equation*}
U^{2}-D V^{2}=1, U, V \in \mathbb{Z} \tag{35}
\end{equation*}
$$

has positive integer solutions (U, V), and it has a unique positive integer solution $\left(U_{1}, V_{1}\right)$ such that $U_{1}+V_{1} \sqrt{D} \leq U+V \sqrt{D}$, where (U, V) through all positive integer solutions of (35).

2. An elementary approach to the generalized

Ramanujan-Nagell equation
 2.b. Preliminaries

- Let D be a fixed nonsquare positive integer, and let $h(4 D)$ denote the class number of binary quadratic primitive forms with discriminant $4 D$. Further let K be a fixed odd integer with $|K|>1$ and $\operatorname{gcd}(D, K)=1$. It is well known that Pell's equation

$$
\begin{equation*}
U^{2}-D V^{2}=1, U, V \in \mathbb{Z} \tag{35}
\end{equation*}
$$

has positive integer solutions (U, V), and it has a unique positive integer solution $\left(U_{1}, V_{1}\right)$ such that $U_{1}+V_{1} \sqrt{D} \leq U+V \sqrt{D}$, where (U, V) through all positive integer solutions of (35).

- The solution $\left(U_{1}, V_{1}\right)$ is called the least solution of (35). For any positive integer n, let

$$
U_{n}+V_{n} \sqrt{D}=\left(U_{1}+V_{1} \sqrt{D}\right)^{n}
$$

Then $(U, V)=\left(U_{n}, V_{n}\right)(n=1,2, \cdots)$ are all positive integer solutions of (35).

2. An elementary approach to the generalized

 Ramanujan-Nagell equation2.b. Preliminaries

It follows that every solution (U, V) of $U^{2}-D V^{2}=1$ can be expressed as

$$
\begin{equation*}
U+V \sqrt{D}=\lambda_{1}\left(U_{1}+\lambda_{2} V_{1} \sqrt{D}\right)^{m}, \lambda_{1}, \lambda_{2} \in\{1,-1\}, m \in \mathbb{Z}, m \geq 0 \tag{36}
\end{equation*}
$$

Hence, by (36), every solution (U, V) of (35) satisfies

$$
\begin{equation*}
V \equiv 0 \quad\left(\bmod V_{1}\right) \tag{37}
\end{equation*}
$$

Lemma 19 (Le-1995, Yang and Fu-2015)

If the equation

$$
\begin{equation*}
X^{2}-D Y^{2}=K^{Z}, X, Y, Z \in \mathbb{Z}, \operatorname{gcd}(X, Y)=1, Z>0 \tag{38}
\end{equation*}
$$

has solutions (X, Y, Z), then every solution (X, Y, Z) of (38) can be expressed as

2. An elementary approach to the generalized

 Ramanujan-Nagell equation2.b. Preliminaries

$$
\begin{gathered}
Z=Z_{1} t, t \in \mathbb{Z}^{+} \\
X+Y \sqrt{D}=\left(X_{1}+\lambda Y_{1} \sqrt{D}\right)^{t}(U+V \sqrt{D}), \lambda \in\{1,-1\}
\end{gathered}
$$

where (U, V) is a solution of (35) and X_{1}, Y_{1}, Z_{1} are positive integers satisfy

$$
\begin{equation*}
X_{1}^{2}-D Y_{1}^{2}=K^{Z_{1}}, \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1, Z_{1} \mid h(4 D) \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
1<\left|\frac{X_{1}+Y_{1} \sqrt{D}}{X_{1}-Y_{1} \sqrt{D}}\right|<U_{1}+V_{1} \sqrt{D} \tag{40}
\end{equation*}
$$

and $\left(U_{1}, V_{1}\right)$ is the least solution of (35).

2. An elementary approach to the generalized

 Ramanujan-Nagell equation2.c. The proofs of the main results

Proof of Theorem 12.

We now assume that (x, y, z) is a solution of the eq. $x^{2}+(2 k-1)^{y}=k^{z}$ with $y \in\{3,5\}$. By Lemma 18, we have $2 \nmid z$. Hence, for any divisor d of $2 k-1$, we get from (5) that

$$
\begin{equation*}
1=\left(\frac{k^{z}}{d}\right)=\left(\frac{k}{d}\right)=\left(\frac{4 k}{d}\right)=\left(\frac{2}{d}\right), \tag{41}
\end{equation*}
$$

where $(* / *)$ is the Jacobi symbol. However, if $d \equiv \pm 3(\bmod 8)$, then we have $(2 / d)=-1$, which contradicts (41). Thus, the theorem is proved.
2. An elementary approach to the generalized Ramanujan-Nagell equation
2.c. The proofs of the main results

Proof of Theorem 13.

Since k is square, we have

$$
\begin{equation*}
k=\ell^{2}, \ell \in \mathbb{N} \tag{42}
\end{equation*}
$$

Substitute (42) into $x^{2}+(2 k-1)^{3}=k^{z}$ and $x^{2}+(2 k-1)^{5}=k^{z}$, we get

$$
\begin{equation*}
x^{2}+\left(2 \ell^{2}-1\right)^{3}=\ell^{2 z}, x, z \in \mathbb{N}, z>3 \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2}+\left(2 \ell^{2}-1\right)^{5}=\ell^{2 z}, x, z \in \mathbb{N}, z>5 \tag{44}
\end{equation*}
$$

respectively. Using Lemmas 15,17 and 18, we can complete the proof.

2. An elementary approach to the generalized

 Ramanujan-Nagell equation2.c. The proofs of the main results

Proof of Theorem 14.

Notice that k is not a square, $2 \nmid 2 k-1, \operatorname{gcd}(k, 2 k-1)=1$ and $2 \nmid z$ by Lemma 18, then the equation

$$
\begin{equation*}
X^{2}-k Y^{2}=(-(2 k-1))^{Z}, X, Y, Z \in \mathbb{Z}, \operatorname{gcd}(X, Y)=1, Z>0 \tag{45}
\end{equation*}
$$

has a solution

$$
\begin{equation*}
(X, Y, Z)=\left(x, k^{(z-1) / 2}, y\right) \tag{46}
\end{equation*}
$$

Therefore, apply Lemma 19 to (45) and (46), we can obtain the theorem immediately.

2. An elementary approach to the generalized Ramanujan-Nagell equation
 2.c.1. An application of Theorem 14

- Now we illustrate Theorem 14 for determining whether the eq. $x^{2}+(2 k-1)^{5}=k^{z}$ has solutions with $y \in\{3,5\}$ for $k=736$. These two cases correspond to the Diophantine equations

$$
\begin{align*}
& x^{2}+1471^{3}=736^{z}, x, z \in \mathbb{N} \tag{47}\\
& x^{2}+1471^{5}=736^{z}, x, z \in \mathbb{N} \tag{48}
\end{align*}
$$

respectively. Here we will only solve the equation (47). By the same techniques, we can similarly treat the latter one.

2. An elementary approach to the generalized Ramanujan-Nagell equation
 2.c.1. An application of Theorem 14

- Now we illustrate Theorem 14 for determining whether the eq. $x^{2}+(2 k-1)^{5}=k^{z}$ has solutions with $y \in\{3,5\}$ for $k=736$. These two cases correspond to the Diophantine equations

$$
\begin{align*}
& x^{2}+1471^{3}=736^{z}, x, z \in \mathbb{N} \tag{47}\\
& x^{2}+1471^{5}=736^{z}, x, z \in \mathbb{N} \tag{48}
\end{align*}
$$

respectively. Here we will only solve the equation (47). By the same techniques, we can similarly treat the latter one.

- We now to prove that (47) has no solutions (x, z). To do this, we use Lemma 19.

2. An elementary approach to the generalized

Ramanujan-Nagell equation
2.c.1. An application of Theorem 14

- If (x, z) is a solution of (47), then the equation

$$
\begin{equation*}
X^{2}-736 Y^{2}=(-1471)^{Z}, X, Y, Z \in \mathbb{Z}, \operatorname{gcd}(X, Y)=1, Z>0 \tag{49}
\end{equation*}
$$

has a solution

$$
\begin{equation*}
(X, Y, Z)=\left(x, 736^{(z-1) / 2}, 3\right) \tag{50}
\end{equation*}
$$

2. An elementary approach to the generalized

Ramanujan-Nagell equation

2.c.1. An application of Theorem 14

- If (x, z) is a solution of (47), then the equation

$$
\begin{equation*}
X^{2}-736 Y^{2}=(-1471)^{Z}, X, Y, Z \in \mathbb{Z}, \operatorname{gcd}(X, Y)=1, Z>0 \tag{49}
\end{equation*}
$$

has a solution

$$
\begin{equation*}
(X, Y, Z)=\left(x, 736^{(z-1) / 2}, 3\right) \tag{50}
\end{equation*}
$$

- Let $\left(X_{1}, Y_{1}, Z_{1}\right)$ be a solution of (49). Applying Lemma 19 to (50), we have

$$
\begin{equation*}
3=Z_{1} t, t \in \mathbb{Z}^{+} \tag{51}
\end{equation*}
$$

On the other hand, since $h(4 \times 736)=4$, by (39), we have $4 \equiv 0$ $\left(\bmod Z_{1}\right)$.

2. An elementary approach to the generalized

Ramanujan-Nagell equation
2.c.1. An application of Theorem 14

- Hence, we see from (51) that $Z_{1}=1$. So we have

$$
\begin{equation*}
X_{1}^{2}-736 Y_{1}^{2}=-1471, X_{1}, Y_{1} \in \mathbb{Z}^{+}, \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1 \tag{52}
\end{equation*}
$$

Further, since the least solution of Pell's equation

$$
U^{2}-736 V^{2}=1, \quad U, V \in \mathbb{Z}
$$

is $\left(U_{1}, V_{1}\right)=(24335,897)$, by (40), we have

$$
\begin{equation*}
1<\left|\frac{X_{1}+Y_{1} \sqrt{736}}{X_{1}-Y_{1} \sqrt{736}}\right|<24335+897 \sqrt{736} \tag{53}
\end{equation*}
$$

2. An elementary approach to the generalized

Ramanujan-Nagell equation

2.c.1. An application of Theorem 14

- Hence, we see from (51) that $Z_{1}=1$. So we have

$$
\begin{equation*}
X_{1}^{2}-736 Y_{1}^{2}=-1471, X_{1}, Y_{1} \in \mathbb{Z}^{+}, \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1 \tag{52}
\end{equation*}
$$

Further, since the least solution of Pell's equation

$$
U^{2}-736 V^{2}=1, \quad U, V \in \mathbb{Z}
$$

is $\left(U_{1}, V_{1}\right)=(24335,897)$, by (40), we have

$$
\begin{equation*}
1<\left|\frac{X_{1}+Y_{1} \sqrt{736}}{X_{1}-Y_{1} \sqrt{736}}\right|<24335+897 \sqrt{736} \tag{53}
\end{equation*}
$$

- Hence, by (52) and (53), we get

$$
\begin{equation*}
X_{1}+Y_{1} \sqrt{736}<\sqrt{1471(24335+897 \sqrt{736})}<8462 \tag{54}
\end{equation*}
$$

2. An elementary approach to the generalized

Ramanujan-Nagell equation

2.c.1. An application of Theorem 14

- Using MAPLE, by Lemma 19, we see that the only solution $\left(X_{1}, Y_{1}, Z_{1}\right)$ of (52) is $(2577,95,1)$. Then we have
$x+736^{(z-1) / 2} \sqrt{736}=(2577+95 \lambda \sqrt{736})^{3}(U+V \sqrt{736}), \lambda \in\{1,-1\}$,
where (U, V) is a solution of Pell's equation

$$
\begin{equation*}
U^{2}-736 V^{2}=1, \quad U, V \in \mathbb{Z} \tag{56}
\end{equation*}
$$

Let

$$
\begin{equation*}
f+g \lambda \sqrt{736}=(2577+95 \lambda \sqrt{736})^{3} . \tag{57}
\end{equation*}
$$

- Obviously, f and g are positive integers. Substitute (57) into (55), we have

$$
x+736^{(z-1) / 2} \sqrt{736}=(f+g \lambda \sqrt{736})(U+V \sqrt{736}),
$$

2. An elementary approach to the generalized Ramanujan-Nagell equation
 2.c.1. An application of Theorem 14

whence we get

$$
\begin{equation*}
736^{(z-1) / 2}=f V+\lambda g U . \tag{58}
\end{equation*}
$$

- Since the least solution of (56) is $\left(U_{1}, V_{1}\right)=(24335,897)$, by (37), we have $V \equiv 0(\bmod 897)$. So, we obtain $23 \mid V$. Hence, by (58), we get

$$
\begin{equation*}
0 \equiv \lambda g U \quad(\bmod 23) \tag{59}
\end{equation*}
$$

Further, since $\lambda \in\{1,-1\}$ and $\operatorname{gcd}(U, 23)=1$ by (57), we see from (59) that

$$
\begin{equation*}
g \equiv 0 \quad(\bmod 23) \tag{60}
\end{equation*}
$$

2. An elementary approach to the generalized Ramanujan-Nagell equation
 2.c.1. An application of Theorem 14

- However, by (57), we have $g=2523692765 \equiv 9(\bmod 23)$. It implies that (60) is false. Therefore, (47) has no solutions (x, z).

References

目 M．Bennett and N．Billerey，Sums of two S－units via Frey－Hellegouarch curves，Math．Comp． 305 （2017），1375－1401．
嗇 M．A．Bennett and C．Skinner，Ternary Diophantine equations via Galois representations and modular forms，Canad．J．Math． 56 （2004）， 23－54．
䍰 W．Bosma，J．Cannon，C．Playoust，The Magma Algebra System I． The user language，J．Symbolic Comput． 24 （1997），235－265
囯 J．Cremona，Elliptic Curve Data， http：／／johncremona．github．io／ecdata／and LMFDB－The L－functions and Modular Forms Database，http：／／www．Imfdb．org／or Elliptic curves over \mathbb{Q} ，http：／／www．Imfdb．org／EllipticCurve／Q／

References

嗇 M．－J．Deng，J．Guo and A．－J．Xu，A note on the Diophantine equation $x^{2}+(2 c-1)^{m}=c^{n}$ ，Bull．Aust．Math．Soc． 98 （2018），188－195．

围 Y．Fujita and N．Terai，On the generalized Ramanujan－Nagell equation $x^{2}+(2 c-1)^{m}=c^{n}$ ，Acta Math．Hung． 162 （2020），518－526．
目 M．－H．Le，Some exponential Diophantine equations I：The equation $D_{1} x^{2}-D_{2} y^{2}=\lambda k^{z} . J$. Number Theory 55 （1995），209－221．

References

R M．H．Le and G．Soydan，A brief survey on the generalized Lebesgue－Ramanujan－Nagell equation，Surv．Math．Appl． 15 （2020）， 473－523．
国 E．K．Mutlu，M．H．Le and G．Soydan，A modular approach to the generalized Lebesgue－Ramanujan－Nagell equation，Indagationes Mathematicae 33，（2022），992－1000．
目 E．K．Mutlu，M．H．Le and G．Soydan，An elementary approach to the generalized Lebesgue－Ramanujan－Nagell equation，to appear in Indian J．Pure and App．Math．（2022）．
图 N．Terai，A note on the Diophantine equation $x^{2}+q^{m}=c^{n}$ ，Bull． Aust．Math．Soc． 90 （2014），20－27．
固 H．Yang and R．－Q．Fu，An upper bound for least solutions of exponential Diophantine equation $D_{1} x^{2}-D_{2} y^{2}=\lambda k^{2}$ ，Int．J．Number Theory 11 （2015），1107－1114．

Thank you for your attention!

Merci pour votre attention!

