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1.a. Motivation
1.a.1. History

In 1844, E. Catalan conjectured that the equation

xm + 1 = yn, x , y ,m, n ∈ Z+, min{x , y ,m, n} > 1 (1)

has only the solution (x , y ,m, n) = (2, 3, 3, 2). (This conjecture has
been proved by P. Mihǎilescu.)

Six years later, V.A. Lebesgue solved (1) for m ≡ 0 (mod 2), namely,
he proved that the equation

x2 + 1 = yn, x , y , n ∈ Z+, min{x , y , n} > 1

has no solutions (x , y , n).
Afterwards, T. Nagell solved the equation with the form

x2 + D = yn, x , y , n ∈ Z+, gcd(x , y) = 1, n > 2, (2)

where D = 3, 4 and 5. Therefore, (2) and its generalizations are called
the generalized Lebesgue-Nagell equation.
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1.a. Motivation
1.a.1. History

In 1913, S. Ramanujan conjectured that the equation

x2 + 7 = 2n+2, x , n ∈ Z+ (3)

has only the solutions (x , n) = (1, 1), (3, 2), (5, 3), (11, 5) and
(181, 13).

In 1945, W. Ljunggren proposed the same problem in Norwegian and
T. Nagell first proved it three years later. Therefore, the equation

x2 + D =


2n+2, if p = 2,

x , n ∈ Z+

pn, if p 6= 2,

(4)

and its generalizations are called the generalized
Ramanujan-Nagell equation.
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1.a. Motivation
1.a.1. History

Some details about the generalized Lebesgue-Ramanujan-Nagell
equations can be found in the following survey papers:

1 F.S. Abu Muriefah and Y. Bugeaud, 2006, Rev. Colombiana Math.
2 A. Bérczes and I. Pink, 2014, An. St. Univ. Ovidius Constanta.
3 M.H. Le and G.Soydan, 2020, Survey in Mathematics and its

Applications.
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1.a. Motivation
1.a.2. Terai’s Conjecture

In 2014, N. Terai proposed the following conjecture:

Conjecture 1

For any k with k > 1, the equation

x2 + (2k − 1)y = kz , x , y , z ∈ Z+ (5)

has only one solution (x , y , z) = (k − 1, 1, 2).
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1.a. Motivation
1.a.3. Earlier results on the conjecture

(2014) For the case 4 | k , N. Terai used some classical methods to
discuss the eq. x2 + (2k − 1)y = kz for k ≤ 30. However, his method
does not apply for k ∈ {12, 24}.

(2017) M. A. Bennett and N. Billerey used the modular approach to
solve the case k ∈ {12, 24}.
(2018) M.J. Deng, J. Guo and A.J. Xu verified Conjecture 1 when the
case k ≡ 3 (mod 4) with 3 ≤ k ≤ 499.
(2020) Y. Fujita and N. Terai verified the conjecture when the cases
2k − 1 = 3p` and 2k − 1 = 5p` with p a prime and ` a positive integer.
Most of solved cases of Conjecture 1 focus on the case 4 - k , and very
little is known in the case 4 | k .
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1.b. Main result

In this work, using the modular approach we prove the following result:

Theorem 1 (Mutlu-Le-S, 2022)

If 4 | k , 30 < k < 724 and 2k − 1 is an odd prime power, then under the
GRH, Conjecture 1 is true.
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1.c. Preliminaries
1.c.1. Modular Approach

The most important progress in the field of the Diophantine equations
has been with Wiles’ proof of Fermat’s Last Theorem.
His proof is based on deep results about Galois representations
associated to elliptic curves and modular forms.

The method of using such results to deal with Diophantine problems,
is called the modular approach. After Wiles’ proof, the original
strategy was strengthened and many mathematicians achieved great
success in solving other equations that previously seemed hard.
As a result of these efforts, the generalized Fermat equation

Axp + Byq = Cz r , with 1/p + 1/q + 1/r < 1, (6)

where p, q, r ∈ Z≥2, A,B,C are non-zero integers and x , y , z are
unknown integers became a new area of interest.
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1.c. Preliminaries
1.c.1. Modular Approach

Call an integer solution (x , y , z) to such an equation proper if
gcd(x , y , z) = 1. It was proved that equation

Axp + Byq = Cz r , with 1/p + 1/q + 1/r < 1,

has finitely many proper solutions by H. Darmon and A. Granville in
1994. In recent 30 years, several authors considered many cases of the
above equations.

The following survey papers are good references for the case
ABC = 1:

1 M.A. Bennett, I. Chen, S. Dahmen and S. Yazdani, Generalized Fermat
equations : a miscellany, Int. J. Number Theory, (2015).

2 M. A. Bennett, P. Mihǎilescu and S. Siksek, The generalized Fermat
equation, in Springer volume Open Problems in Mathematics, (2016).

One can find the details concerning modular approach in Cohen’s
book (Chapter 15) and the paper is titled "Modular Approach to
Diophantine equations" of Samir Siksek (2012).
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1.c. Preliminaries
1.c.2. Bennet-Skinner Strategy: Signature (n, n, 2)

Here we give recipes for signature (n, n, 2) which was firstly described
by M.A. Bennett and C. Skinner.

We denote by rad(m) the radical of |m|, i.e. the product of distinct
primes dividing m, and by ordp(m) the largest nonnegative integer k
such that pk divides m.
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1.c. Preliminaries
1.c.2. Bennet-Skinner Strategy: Signature (n, n, 2)

We always assume that n ≥ 7 is prime, and a, b, c ,A,B and C are
nonzero integers with Aa, Bb and Cc pairwise coprime, A and B are
nth-power free, C squarefree satisfying

Aan + Bbn = Cc2. (7)

We further assume that we are in one of the following situations:
(i) abABC ≡ 1 (mod 2) and b ≡ −BC (mod 4).
(ii) ab ≡ 1 (mod 2) and either ord2(B) = 1 or ord2(C ) = 1.
(iii) ab ≡ 1 (mod 2), ord2(B) = 2 and C ≡ −bB/4 (mod 4).
(iv) ab ≡ 1 (mod 2), ord2(B) ∈ {3, 4, 5} and c ≡ C (mod 4).
(v) ord2(Bb

n) ≥ 6 and c ≡ C (mod 4).
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1.c. Preliminaries
1.c.2. Bennet-Skinner Strategy: Signature (n, n, 2)

For our eq. we are in case (v) and we will consider the curve

E3(a, b, c) : Y
2 + XY = X 3 +

cC − 1
4

X 2 +
BCbn

64
X , (8)

which is defined over Q. By a lemma of Bennett-Skinner, the conductor of
the curve E = E3(a, b, c) is given by

N(E ) = 2α · C 2 · rad(abAB) (9)

where

α =

{
−1 if i = 3, case (v) and ord2(Bb

n) = 6,
0 if i = 3, case (v) and ord2(Bb

n) ≥ 7.
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1.d. The proof of the main result
1.d.1. Some Lemmas

Here and below, we assume that (x , y , z) is a solution of the equation

x2 + (2k − 1)y = kz , x , y , z ∈ Z+ (10)

with (x , y , z) 6= (k − 1, 1, 2). Then, by (10), we can get z > y
immediately. Obviously, if we can prove that the solution (x , y , z) does not
exist, then Conjecture 1 is true. The following two lemmas are basic
properties on the solution (x , y , z).
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1.d. The proof of the main result
1.d.1. Some Lemmas

Lemma 2 (Mutlu-Le-S, 202)

Suppose 4 | k . Then 2 - y .

Proof.

If 2 | y then (5) implies x2 + 1 ≡ 0 (mod 4), impossible.

Lemma 3 (Mutlu-Le-S, 2022)

If 2k − 1 is an odd prime power, then 2 - z .

Proof.
See Lemma 2.6 of Deng, Guo and Xu.
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1.d. The proof of the main result
1.d.1. Some Lemmas

Lemma 4

Let F (t) = t + a/t be a function of the real variable t, where a is a
constant with a > 1. Then F (t) is a strictly decreasing function for
1 ≤ t <

√
a.

Proof.

Since F ′(t) = 1− a/t2 < 0 for 1 ≤ t <
√
a, where F ′(t) is the derivative

of F (t), we obtain the lemma immediately.
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1.d. The proof of the main result
1.d.1. Some Lemmas

Lemma 5 (Mutlu-Le-S, 2022)

If k is a power of 2 and 4 | k , then Conjecture 1 is true.

Proof.
The proof is based on Lemmas 2, 4 and a theorem of [M.H. Le,
JNT-1995]

Lemma 6 (Mutlu-Le-S, 2022)

If 4 | k , 2k − 1 is an odd prime power and k is a square, then Conjecture 1
is true.

Proof.
The proof is elementary and it is based on Lemma 2.
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1.d. The proof of the main result
1.d.2. The case y ≥ 7 prime

For any fixed positive integers m and n with n > 1, there exist unique
positive integers f and g such that

m = fgn, f is nth-power free. (11)

The positive integer f is called the nth-power free part of m, and
denoted by f (m). Similarly, g is denoted by g(m). Obviously, by (11),
if 2 | m, then we have

ord2(m) = ord2(f (m)) + n ord2(g(m)), 0 ≤ ord2(f (m)) < n. (12)
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1.d. The proof of the main result
1.d.2. The case y ≥ 7 prime

Let k be a positive integer with 4 | k . Suppose that y ≥ 7 is prime.
Then equation x2 + (2k − 1)y = kz becomes

(−1) · (2k − 1)y + kz = x2. (13)

Then, the ternary equation Axp + Byq = Cz r can be obtained from
(13) by the substitution

A = −1, a = 2k−1, B = f (kz), b = g(kz), C = 1, c = (−1)(x−1)/2x ,
(14)

where f (kz) and g(kz) are defined as in (11).

Lemma 7 (Mutlu-Le-S, 202?)

If 4 | k , then b, B and C in (14) satisfy the case (v) [ord2(Bb
n) ≥ 6 and

c ≡ C (mod 4)] with ord2(Bb
n) > 6.
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1.d. The proof of the main result
1.d.2. The case y ≥ 7 prime

By the strategy of Bennett-Skinner, we are interested in the following
elliptic curve (called a Frey curve)

E3 : Y
2 + XY = X 3 +

(−1)(x−1)/2x − 1
4

X 2 +
kz

64
X . (15)

The conductor of this elliptic curve is given by

N(E3) = rad(2k − 1) · rad(k). (16)

Note that when k = 720, one gets that N(E3) = 43170 and
2k − 1 = 1439 is prime. But when k = 724, one obtains
N(E3) = 523.814, outside the range of the Cremona elliptic curve
database where the upper bound for conductors is 500.000 (in
November 2021).
We therefore restrict attention to 30 < k ≤ 720.
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1.d. The proof of the main result
1.d.2. The case y ≥ 7 prime

Using Lemmas 5 and 6, we can exclude the cases k = 2r0 with r0 = 6
and k = `2 with ` ∈ {6, 8, 10, 18, 22, 24}. This leaves 50 values of k
to consider. We proceed as follows.

For a given k we compute by the formula the conductor of the Frey
curve

E3 : Y
2 + XY = X 3 +

(−1)(x−1)/2x − 1
4

X 2 +
kz

64
X . (17)

Using Cremona’s elliptic curve database we obtain a list of
isomorphism classes of elliptic curves for that conductor.
In each class, we must determine whether there exists a model
consistent with the model at (17).
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1.d. The proof of the main result
1.d.2. The case y ≥ 7 prime

For example, when k = 192 and the conductor is 2298, the
isomorphism class of the curve labelled 2298.h4, [1, 0, 0,−184, 1088],
contains the curve [1,−48, 0, 576, 0] (note that this fails to provide a
solution to our problem, because the corresponding values of y , z ,
equal 1,2, not allowed).

Since our Frey curve has point (0, 0) of order 2, it is only necessary to
consider isomorphism classes determined by curves with nontrivial
2-torsion.
Suppose a Cremona class representative has nontrivial 2-torsion point
T0. To obtain an isomorphic curve of the form (15) we must take the
transformation mapping T0 to (0, 0), and then test the resulting curve

to see whether the X− coefficient is of the form
kz

64
. This was

programmed into Magma.
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1.d. The proof of the main result
1.d.2. The case y ≥ 7 prime

Resulting curves with corresponding (y , z) = (1, 2) are not allowed,
and only one other curve resulted, namely [1, 733/4, 0, 33/16, 0] when
k = 132 with z = 2. But this does not provide a solution to our
problem because there is no corresponding value of x (or y). Finally,
thus, we deduce that the eq. x2 + (2k − 1)y = kz has no solutions
where y ≥ 7 and 30 < k ≤ 720.
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1.d. The proof of the main result
1.d.3. The case y = 3 or y = 5

Here we solve the Diophantine equations

x2 + (2k − 1)3 = kz , z > 3 odd, (18)

and
x2 + (2k − 1)5 = kz , z > 5 odd, (19)

where 4 | k , 30 < k < 724 and 2k − 1 is an odd prime power.
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1.d. The proof of the main result
1.d.3. The case y = 3 or y = 5

Write in the eq. x2 + (2k − 1)y = kz , y = 6A+ i , z = 3B + j where
i = 3 or 5 and 0 ≤ j ≤ 2, A,B ≥ 0. Since 2k − 1 is an odd prime
power, we have 2k − 1 = pr , where p is an odd prime and r is a
positive integer. Then we see that(

kB+j

(2k − 1)2A
,

xk j

(2k − 1)3A

)
is an S-integral point (U,V ) on the elliptic curve

Eijk : V 2 = U3 − (2k − 1)ik2j ,

where S = {p}, 4 | k , 30 < k < 724 and 2k − 1 is a power of p, in
view of the restriction gcd(k , x) = 1.
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1.d. The proof of the main result
1.d.3-i. S-Integral Points

A practical method for the explicit computation of all S-integral points
on a Weierstrass elliptic curve has been developed by A. Pethő, H.G.
Zimmer, J. Gebel and E. Herrmann and has been implemented in
Magma. The relevant routine SIntegralPoints worked without
problems for all triples (i , j , k) except for

(i , j , k) ∈ {(5, 2, 96), (5, 1, 120), (5, 2, 156), (5, 2, 180), (5, 2, 192),

(5, 2, 220), (3, 1, 232), (5, 0, 232), (5, 2, 232), (5, 0, 240), (5, 2, 240),

(5, 2, 244), (5, 0, 304), (5, 1, 304), (5, 2, 304), (3, 2, 316), (5, 0, 316),

(5, 2, 316), (5, 2, 324), (5, 0, 360), (5, 1, 364), (5, 2, 364), (3, 2, 372),

(5, 1, 372), (5, 2, 372), (5, 2, 376), (3, 1, 412), (3, 2, 412), (5, 0, 412),

(5, 0, 420), (5, 0, 432), (5, 1, 432), (3, 2, 444), (5, 1, 444), (5, 2, 444),

(5, 0, 456), (5, 1, 456), (5, 2, 460), (5, 1, 492), (5, 1, 516), (5, 2, 516),
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1.d. The proof of the main result
1.d.3-i S-Integral Points

(3, 1, 520), (5, 0, 520), (5, 2, 520), (5, 2, 532), (5, 1, 544), (5, 2, 552),

(3, 2, 612), (5, 0, 612), (5, 1, 612), (5, 2, 612), (5, 1, 616), (5, 0, 640),

(5, 2, 640), (3, 2, 652), (5, 2, 652), (5, 2, 660), (3, 2, 664)(5, 0, 664),

(5, 2, 664), (5, 1, 684), (5, 0, 700), (5, 1, 700), (5, 2, 700), (5, 0, 712),

(5, 0, 720), (5, 1, 720)}

The non-exceptional triples (i , j , k) do not give any positive integer
solution to equation x2 + (2k − 1)3 = kz or x2 + (2k − 1)5 = kz .
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1.d. The proof of the main result
1. d. 3-ii. The elementary approach to some exceptional triples

Thirty-eight of the above exceptional triples have been solved using an
elementary approach, as follows.

Lemma 8 (Mutlu-Le-S, 202?)

If k ≡ 3 or 4 (mod 5), then the equation

x2 + (2k − 1)5 = kz , z > 5 odd,

has no solutions (x , z), where 4 | k , 30 < k < 724 and 2k − 1 is an odd
prime power.

Proof.
The proof is based on congruences and Jacobi symbol.
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1.d. The proof of the main result
1. d. 3-ii. The elementary approach to some exceptional triples

Lemma 9 (Mutlu-Le-S, 202?)

If 2 | k and k + 1 has an odd prime divisor p with p ≡ ±3 (mod 8), then
the eq.

x2 + (2k − 1)5 = kz , z > 5 odd,

has no solutions (x , z), where 4 | k , 30 < k < 724 and 2k − 1 is an odd
prime power.

Proof.
The proof is based on congruences and Jacobi symbol.
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1.d. The proof of the main result
1. d. 3-ii. The elementary approach to some exceptional triples

Notice that if 2 | k and every odd prime divisor p of k + 1 satisfies p ≡ ±1
(mod 8), then either k + 1 ≡ 1 (mod 8) or k + 1 ≡ −1 (mod 8). Hence,
by Lemma 9, we can obtain the following lemma immediately.

Lemma 10 (Mutlu-Le-S, 202?)

If k ≡ 2 or 4 (mod 8), then the eq. x2 + (2k − 1)5 = kz has no solutions
(x , z).

Lemma 11 (Mutlu-Le-S, 202?)

For k ∈ {120, 156, 180, 220, 244, 304, 316, 324, 360, 364, 372, 376,
412,420,444,460,492,516,532,544,612,652,660,664,684,700},
the eq. x2 + (2k − 1)5 = kz has no solutions (x , z).
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1.d. The proof of the main result
1. d. 3-ii. The elementary approach to some exceptional triples

Proof.

By Lemmas 8, 9 and 10, the eq. x2 + (2k − 1)5 = kz has no solutions
(x , z) for k ∈ {244, 304, 324, 364, 444, 544, 664, 684}, k ∈ {120, 360, 376}
and k ∈ {156, 180, 220, 316, 372, 412, 420, 460, 492, 516, 532, 612, 652,
660, 700}, respectively.
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1.d. The proof of the main result
1. d. 3-iii. The case r = 0

Denote the rank of the elliptic curve Eijk by r . Here, we seperate the
above remaining twentynine exceptional triples (i , j , k) depending
on whether r = 0, r = 1 and r = 2, respectively.

For the triples (i , j , k) ∈ {(5, 1, 456), (5, 2, 552), (5, 1, 616),
(3,2,652),(5,1,720)},
there are no rational points (so no S-integral points) on Eijk under the
assumption that r = 0 which is proved by descent algorithms of Magma.
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1.d. The proof of the main result
1. d. 3-iv. The case r = 1

For each remaining triples (i , j , k) (in total twentyfour triples), the
rank of Eijk is 1, i.e. r = 1 except for (i , j , k) = (3, 2, 664). We
performed two-, four- and eight-descent algorithms or two-, four-,
three- and twelve-descent algorithms for these triples (These
algorithms were improved by J. Cremona, S. Donnelly, T. Fisher, J.
Merriman, C. O’Neil, S. Siksek, D. Simon, N. Smart, S. Stamminger,
M. Stoll, · · · ).

Since Magma found a generator for each of them, it was succesfull to
show non-existence of S-integral points on Eijk for the exceptional
twentythree triples.
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1.d. The proof of the main result
1. d. 3-iv. The case r = 1

The rank 1 curves frequently have generators of large height. We can
estimate the height of a generator in advance using the Gross-Zagier
formula, as for example used by A. Bremner in treating the family of
curves y2 = x(x2 + p).

Having an estimate of the height in advance tells us whether it is likely
that standard descent arguments, as programmed into Magma, will be
successfull in finding the generator.
For twentythree curves we are considering here, Magma was able to
compute generators for all cases, using a combination of three-, four-,
eight-, and twelve-descent algorithms.
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1.d. The proof of the the main result
1. d. 3-v. The case r = 2

The single instance of rank 2 was at (i , j , k) = (3, 2, 664). Magma
found only S-integral point (6435758912 : 516297057335360 : 1) on
the corresponding curve under the assumption that 1 ≤ r ≤ 2 and its
generator (402234932 : 8067141520865 : 1).

By eight-descent algorithm, we found two independent points which
are generators. So, it is confirmed that r = 2 and this curve has only
S-integral point (6435758912 : 516297057335360 : 1). But it does not
give any positive integer solution to equation x2 + (2k − 1)3 = kz .

To sum up, the main result is proved.
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2. An elementary approach to the generalized
Ramanujan-Nagell equation
2.a. Main results

Let k be a fixed positive integer with k > 1. Here, using various elementary
methods in number theory, we give certain criterions which can make the
equation

x2 + (2k − 1)y = kz (20)

to have no positive integer solutions (x , y , z) with y ∈ {3, 5}. These results
make up the defiency of the modular approach when applied to the above
equation.
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2. An elementary approach to the generalized
Ramanujan-Nagell equation
2.a. Main results

Theorem 12 (Mutlu-Le-S, 202?)

If (2k − 1) has a divisor d with d ≡ ±3 (mod 8), then the eq.
x2 + (2k − 1)y = kz has no solutions (x , y , z) with y ∈ {3, 5}.
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2. An elementary approach to the generalized
Ramanujan-Nagell equation
2.a. Main results

For any sufficiently large positive integer N, let N0 denote the number of
positive integers k which satisfy the assumption of Theorem 12 with
1 ≤ k ≤ N. Then we have

lim
N→∞

N0

N
∼ 1−

∏
p

(1− 1
p
) (p is prime with p ≡ ±3 (mod 8))

It implies that there exist almost all positive integers k can make
x2 + (2k − 1)y = kz has no solutions (x , y , z) with y ∈ {3, 5}.

Theorem 13 (Mutlu-Le-S, 202?)

If k is a square, then the eq. x2 + (2k − 1)y = kz has no solutions (x , y , z)
with y ∈ {3, 5}.
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2. An elementary approach to the generalized
Ramanujan-Nagell equation
2.a. Main results

Theorem 14 (Mutlu-Le-S, 202?)

If k is not a square, and (x , y , z) is a solution of the eq.
x2 + (2k − 1)y = kz with y ∈ {3, 5}, then 2 - z and

y = Z1t, t ∈ Z+,

x + k(z−1)/2
√
k = (X1 + λY1

√
k)t(u + v

√
k), λ ∈ {1,−1},

where X1,Y1,Z1 are positive integers such that

X 2
1 − kY 2

1 = (−(2k − 1))Z1 , gcd(X1,Y1) = 1, Z1 | h(4k)

and

1 <

∣∣∣∣∣X1 + Y1
√
k

X1 − Y1
√
k

∣∣∣∣∣ < u1 + v1
√
k ,
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2. An elementary approach to the generalized
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where h(4k) is the class number of binary quadratic primitive forms with
discriminant 4k , (u, v) is a solution of Pell’s equation

u2 − kv2 = 1, u, v ∈ Z, (21)

and (u1, v1) is the least solution of (21).
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2.b. Preliminaries

Let Z[t] denote the set of all the polynomials of indeterminate t with
integer coefficients. It is a well known fact that if F (t) ∈ Z[t] which leading
coefficient is positive, then there exist positive integers m which can make

F (t) ∈ Z+, t ∈ Z+, t ≥ m. (22)

Therefore, we may use the notation m(F (t)) to represent the least value of
positive integers m with (22).

Lemma 15

Let F (t) = t + a/t be a function of the real variable t, where a is a
constant with a > 1. Then F (t) is a strictly decreasing function for
1 ≤ t <

√
a.
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Proof.

Since F ′(t) = 1− a/t2 < 0 for 1 ≤ t <
√
a, where F ′(t) is the derivative

of F (t), we obtain the lemma immediately.

Lemma 16 (Mutlu-Le-S, 202?)

Let F (t) = t2n − a2n−1t
2n−1 − · · · − a0 ∈ Z[t], where n is a positive

integer. If there exist G (t),R(t) ∈ Z[t] such that

F (t) = (G (t))2 + R(t), (23)

where

G (t) = tn − bn−1t
n−1 − · · · − b0, R(t) = r`t

` − r`−1t
`−1

− · · · − r0, r` 6= 0, ` < n,
(24)
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cont.
then the equation

X 2 = F (Y ), X ,Y ∈ Z+ (25)

has no solutions (X ,Y ) with Y ≥ Y0, where

Y0 =

{
max{m(G (t)), m(R(t)), m(2G (t)− R(t))}, if r` > 0,
max{m(G (t)), m(−R(t)), m(2G (t) + R(t)− 1)}, if r` < 0.

(26)
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Lemma 17 (Mutlu-Le-S, 202?)

Each of the following equations has no solutions (X ,Y ).

X 2 = Y 4 − 8Y 3 + 12Y 2 − 6Y + 1, X ,Y ∈ Z+. (27)

X 2 = Y 6 − 8Y 3 + 12Y 2 − 6Y + 1, X ,Y ∈ Z+. (28)

X 2 = Y 6 − 32Y 5 + 80Y 4 − 80Y 3 + 40Y 2 − 10Y + 1, X ,Y ∈ Z+. (29)

X 2 = Y 8 − 32Y 5 + 80Y 4 − 80Y 3 + 40Y 2 − 10Y + 1, X ,Y ∈ Z+. (30)

X 2 = Y 10 − 8Y 6 + 12Y 4 − 6Y 2 + 1, X ,Y ∈ Z+. (31)
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cont.

X 2 = Y 10− 32Y 5 + 80Y 4− 80Y 3 + 40Y 2− 10Y + 1, X ,Y ∈ Z+. (32)

X 2 = Y 14−32Y 10+80Y 8−80Y 6+40Y 4−10Y 2+1, X ,Y ∈ Z+. (33)

X 2 = Y 18−32Y 10+80Y 8−80Y 6+40Y 4−10Y 2+1, X ,Y ∈ Z+. (34)

Proof.
The proof is based on Lemma 16.
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2.b. Preliminaries

Lemma 18 (Mutlu-Le-S, 202?)

If (x , y , z) is a solution of the eq. x2 + (2k − 1)y = kz with y ∈ {3, 5},
then 2 - z .

Proof.
The proof is based on Lemmas 15 and 17
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2. An elementary approach to the generalized
Ramanujan-Nagell equation
2.b. Preliminaries

Let D be a fixed nonsquare positive integer, and let h(4D) denote the
class number of binary quadratic primitive forms with discriminant 4D.
Further let K be a fixed odd integer with |K | > 1 and gcd(D,K ) = 1.
It is well known that Pell’s equation

U2 − DV 2 = 1, U,V ∈ Z (35)

has positive integer solutions (U,V ), and it has a unique positive
integer solution (U1,V1) such that U1 + V1

√
D ≤ U + V

√
D, where

(U,V ) through all positive integer solutions of (35).

The solution (U1,V1) is called the least solution of (35). For any
positive integer n, let

Un + Vn

√
D = (U1 + V1

√
D)n.

Then (U,V ) = (Un,Vn) (n = 1, 2, · · · ) are all positive integer
solutions of (35).
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2. An elementary approach to the generalized
Ramanujan-Nagell equation
2.b. Preliminaries

It follows that every solution (U,V ) of U2 − DV 2 = 1 can be expressed as

U+V
√
D = λ1(U1+λ2V1

√
D)m, λ1, λ2 ∈ {1,−1}, m ∈ Z, m ≥ 0. (36)

Hence, by (36), every solution (U,V ) of (35) satisfies

V ≡ 0 (mod V1). (37)

Lemma 19 (Le-1995, Yang and Fu-2015)

If the equation

X 2 − DY 2 = KZ , X ,Y ,Z ∈ Z, gcd(X ,Y ) = 1, Z > 0 (38)

has solutions (X ,Y ,Z ), then every solution (X ,Y ,Z ) of (38) can be
expressed as
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2.b. Preliminaries

Z = Z1t, t ∈ Z+,

X + Y
√
D = (X1 + λY1

√
D)t(U + V

√
D), λ ∈ {1,−1},

where (U,V ) is a solution of (35) and X1,Y1,Z1 are positive integers
satisfy

X 2
1 − DY 2

1 = KZ1 , gcd(X1,Y1) = 1, Z1 | h(4D) (39)

and

1 <

∣∣∣∣∣X1 + Y1
√
D

X1 − Y1
√
D

∣∣∣∣∣ < U1 + V1
√
D, (40)

and (U1,V1) is the least solution of (35).
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2.c. The proofs of the main results

Proof of Theorem 12.

We now assume that (x , y , z) is a solution of the eq. x2 + (2k − 1)y = kz

with y ∈ {3, 5}. By Lemma 18, we have 2 - z . Hence, for any divisor d of
2k − 1, we get from (5) that

1 =

(
kz

d

)
=

(
k

d

)
=

(
4k
d

)
=

(
2
d

)
, (41)

where (∗/∗) is the Jacobi symbol. However, if d ≡ ±3 (mod 8), then we
have (2/d) = −1, which contradicts (41). Thus, the theorem is
proved.
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2.c. The proofs of the main results

Proof of Theorem 13.
Since k is square, we have

k = `2, ` ∈ N. (42)

Substitute (42) into x2 + (2k − 1)3 = kz and x2 + (2k − 1)5 = kz , we get

x2 + (2`2 − 1)3 = `2z , x , z ∈ N, z > 3 (43)

and
x2 + (2`2 − 1)5 = `2z , x , z ∈ N, z > 5, (44)

respectively. Using Lemmas 15, 17 and 18, we can complete the proof.
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2.c. The proofs of the main results

Proof of Theorem 14.
Notice that k is not a square, 2 - 2k − 1, gcd(k, 2k − 1) = 1 and 2 - z by
Lemma 18, then the equation

X 2 − kY 2 = (−(2k − 1))Z , X ,Y ,Z ∈ Z, gcd(X ,Y ) = 1, Z > 0 (45)

has a solution
(X ,Y ,Z ) = (x , k(z−1)/2, y). (46)

Therefore, apply Lemma 19 to (45) and (46), we can obtain the theorem
immediately.
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Ramanujan-Nagell equation
2.c.1. An application of Theorem 14

Now we illustrate Theorem 14 for determining whether the eq.
x2 + (2k − 1)5 = kz has solutions with y ∈ {3, 5} for k = 736. These
two cases correspond to the Diophantine equations

x2 + 14713 = 736z , x , z ∈ N, (47)

x2 + 14715 = 736z , x , z ∈ N, (48)

respectively. Here we will only solve the equation (47). By the same
techniques, we can similarly treat the latter one.

We now to prove that (47) has no solutions (x , z). To do this, we use
Lemma 19.
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2. An elementary approach to the generalized
Ramanujan-Nagell equation
2.c.1. An application of Theorem 14

If (x , z) is a solution of (47), then the equation

X 2−736Y 2 = (−1471)Z , X ,Y ,Z ∈ Z, gcd(X ,Y ) = 1, Z > 0 (49)

has a solution
(X ,Y ,Z ) = (x , 736(z−1)/2, 3). (50)

Let (X1,Y1,Z1) be a solution of (49). Applying Lemma 19 to (50),
we have

3 = Z1t, t ∈ Z+. (51)

On the other hand, since h(4× 736) = 4, by (39), we have 4 ≡ 0
(mod Z1).
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2. An elementary approach to the generalized
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2.c.1. An application of Theorem 14

Hence, we see from (51) that Z1 = 1. So we have

X 2
1 − 736Y 2

1 = −1471, X1,Y1 ∈ Z+, gcd(X1,Y1) = 1. (52)

Further, since the least solution of Pell’s equation

U2 − 736V 2 = 1, U,V ∈ Z

is (U1,V1) = (24335, 897), by (40), we have

1 <

∣∣∣∣∣X1 + Y1
√
736

X1 − Y1
√
736

∣∣∣∣∣ < 24335+ 897
√
736. (53)

Hence, by (52) and (53), we get

X1 + Y1
√
736 <

√
1471(24335+ 897

√
736) < 8462. (54)
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Using MAPLE, by Lemma 19, we see that the only solution
(X1,Y1,Z1) of (52) is (2577, 95, 1). Then we have

x+736(z−1)/2
√
736 = (2577+95λ

√
736)3(U+V

√
736), λ ∈ {1,−1},

(55)
where (U,V ) is a solution of Pell’s equation

U2 − 736V 2 = 1, U,V ∈ Z. (56)

Let
f + gλ

√
736 = (2577+ 95λ

√
736)3. (57)

Obviously, f and g are positive integers. Substitute (57) into (55), we
have

x + 736(z−1)/2
√
736 = (f + gλ

√
736)(U + V

√
736),
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whence we get
736(z−1)/2 = fV + λgU. (58)

Since the least solution of (56) is (U1,V1) = (24335, 897), by (37), we
have V ≡ 0 (mod 897). So, we obtain 23 | V . Hence, by (58), we get

0 ≡ λgU (mod 23). (59)

Further, since λ ∈ {1,−1} and gcd(U, 23) = 1 by (57), we see from
(59) that

g ≡ 0 (mod 23). (60)
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However, by (57), we have g = 2523692765 ≡ 9 (mod 23). It implies
that (60) is false. Therefore, (47) has no solutions (x , z).
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Merci pour votre attention!
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