On Some Diophantine equations with power sums

Gökhan SOYDAN

Department of Mathematics, Bursa Uludağ University Bursa-TÜRKIYE

Workshop on Diophantine Equations and Algebraic Equations, May 2-3, 2023
Department of Mathematics, Savoie Mont Blanc University
Chambery-FRANCE
(This is joint work with Daniele Bartoli and Maohua Le)

Table of contents

(1) About Bernoulli numbers and Bernoulli polynomials
(2) Bernoulli numbers/polynomials and consecutive power sums
(3) Diophantine equations with power sums
(4) On a Diophantine equation with power sums

- Linear forms in logarithms
(5) Formulas for $V_{2}\left(T_{k}(x)\right)$ and $V_{3}\left(T_{k}(x)\right)$
(6) The sketches for the proofs
(7) New results on the power values of the sum of three squares in arithmetic progression
(8) References

Table of contents

(1) About Bernoulli numbers and Bernoulli polynomials
(2) Bernoulli numbers/polynomials and consecutive power sums
(3) Diophantine equations with power sums

- On a Diophantine equation with power sums
- Linear forms in logarithms
(5) Formulas for $V_{2}\left(T_{k}(x)\right)$ and $V_{3}\left(T_{k}(x)\right)$
(8) The sketches for the proofs
(7) New results on the power values of the sum of three squares in arithmetic progression
(8) References

1. About Bernoulli numbers and Bernoulli polynomials

- In his posthumous book "Ars Conjectandi" published in 1713 Swiss mathematician Jakob Bernoulli (1655-1705)

introduced the Bernoulli numbers in connection to the study of the sums of powers of consecutive integers $1^{k}+2^{k}+\cdots+n^{k}$. After listing the formulas for the sums of powers:

1. About Bernoulli numbers and Bernoulli polynomials

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}, \sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2},
$$

\cdots up to $k=10$ (Bernoulli expresses the right-hand side without factoring), he gives a general formula involving the numbers which are known today as Bernoulli numbers.

1. About Bernoulli numbers and Bernoulli polynomials

- Bernoulli then explains how these numbers are determined inductively, and emphasizes how his formula ((1) below) is useful for computing the sum of powers.

1. About Bernoulli numbers and Bernoulli polynomials

- Bernoulli then explains how these numbers are determined inductively, and emphasizes how his formula ((1) below) is useful for computing the sum of powers.
- He claims that he did not take "a half of a quarter of an hour" to compute the sum of tenth powers of 1 to 1000 , which he computed correctly as 91409924241424243424241924242500 .

1. About Bernoulli numbers and Bernoulli polynomials

- Bernoulli then explains how these numbers are determined inductively, and emphasizes how his formula ((1) below) is useful for computing the sum of powers.
- He claims that he did not take "a half of a quarter of an hour" to compute the sum of tenth powers of 1 to 1000 , which he computed correctly as 91409924241424243424241924242500 .
- Using modern notation, his formula is written as
$\sum_{i=1}^{n} i^{k}=\sum_{j=0}^{k}\binom{k}{j} B_{j} \frac{n^{k+1-j}}{k+1-j}$, where $\binom{k}{j}$ is the binomial coefficient and B_{j} is the number determined by the recurrence formula

$$
\begin{equation*}
\sum_{j=0}^{k}\binom{k+1}{j} B_{j}=k+1, k=0,1,2 \cdots \tag{1}
\end{equation*}
$$

It is this B_{j} that is subsequently called a Bernoulli number.

1. About Bernoulli numbers and Bernoulli polynomials

1. About Bernoulli numbers and Bernoulli polynomials

- Japanese mathematician Seki Takakazu (1642-1708), published also posthumously, in 1712 (and thus 1 year before Bernoulli!), the formula for the sums of powers and the inductive definition of the Bernoulli numbers are given. His formula and definition are completely the same as Bernoulli's.

1. About Bernoulli numbers and Bernoulli polynomials

- Since this discovery, the Bernoulli numbers have appeared in many important results, including the series expansions of trigonometric and hyperbolic trigonometric functions, the Euler-Maclaurin Summation Formula, the evaluation of the Riemann zeta function, and Fermat's Last Theorem.

1. About Bernoulli numbers and Bernoulli polynomials

- Since this discovery, the Bernoulli numbers have appeared in many important results, including the series expansions of trigonometric and hyperbolic trigonometric functions, the Euler-Maclaurin Summation Formula, the evaluation of the Riemann zeta function, and Fermat's Last Theorem.
- I mention here that a very extensive bibliography on Bernoulli numbers, compiled by Karl Dilcher, is available online: https://www.mathstat.dal.ca/ dilcher/

1. About Bernoulli numbers and Bernoulli polynomials

- A sequence of Bernoulli numbers $B_{0}, B_{1}, B_{2}, \ldots$ is given with the recurrence relation
$(q+1) B_{q}=-\sum_{k=0}^{q-1}\binom{q+1}{k} B_{k}$
where $B_{0}=1$.

1. About Bernoulli numbers and Bernoulli polynomials

- A sequence of Bernoulli numbers $B_{0}, B_{1}, B_{2}, \ldots$ is given with the recurrence relation
$(q+1) B_{q}=-\sum_{k=0}^{q-1}\binom{q+1}{k} B_{k}$
where $B_{0}=1$.
- The first few Bernoulli numbers B_{q} are given as follows:

q	0	1	2	3	4	5	6	8	10	12	
B_{q}	1	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$	$\frac{-1}{30}$	$\frac{5}{66}$	$\frac{-691}{2730}$	

1. About Bernoulli numbers and Bernoulli polynomials

- We have defined Bernoulli numbers by a recurrence formula. However, it is also common to define Bernoulli numbers using the generating function

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} b_{n} \frac{t^{n}}{n!}
$$

Here $b_{n}=B_{n}$.

1. About Bernoulli numbers and Bernoulli polynomials

- The connection between Bernoulli polynomials and Bernoulli numbers is given with the relation

$$
\begin{equation*}
B_{q}(x)=\sum_{k=0}^{q}\binom{q}{k} B_{k} x^{q-k} \tag{3}
\end{equation*}
$$

1. About Bernoulli numbers and Bernoulli polynomials

- The connection between Bernoulli polynomials and Bernoulli numbers is given with the relation

$$
\begin{equation*}
B_{q}(x)=\sum_{k=0}^{q}\binom{q}{k} B_{k} x^{q-k} \tag{3}
\end{equation*}
$$

- The first few Bernoulli polynomials B_{q} are given as follows:

$$
\begin{array}{r}
B_{0}(x)=1, \\
B_{1}(x)=x-\frac{1}{2}, \\
B_{2}(x)=x^{2}-x+\frac{1}{6}, \\
B_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x
\end{array}
$$

1.1 Riemann Zeta Function and Bernoulli numbers

- One of the most powerful applications of the Bernoulli numbers the evaluation of the Riemann zeta function.

Definition 1 (Riemann zeta function)

Let k be a real, $|k| \geq 1$. Then the Riemann zeta function over the real numbers, $\zeta(k)$, is defined as

$$
\zeta(k)=\sum_{n=1}^{\infty} \frac{1}{n^{k}}
$$

1.1 Riemann Zeta Function and Bernoulli numbers

- This function is important for many reasons, but we will highlight one result proven by Euler related to the prime numbers.

Theorem 2

For $k>1$,

$$
\zeta(k)=\prod_{p}\left(\frac{1}{1-p^{-k}}\right)
$$

over all primes p.

1.1 Riemann Zeta Function and Bernoulli numbers

- The Bernoulli numbers help us to calculate the even values of this function.

Theorem 3
For any integer $k>1$,

$$
\zeta(2 k)=\sum_{n=1}^{\infty} \frac{1}{n^{2 k}}=\frac{\left|B_{2 k}\right|(2 \pi)^{2 k}}{2(2 k)!}
$$

1.1 Riemann Zeta Function and Bernoulli numbers

- The Bernoulli numbers help us to calculate the even values of this function.

Theorem 3

For any integer $k>1$,

$$
\zeta(2 k)=\sum_{n=1}^{\infty} \frac{1}{n^{2 k}}=\frac{\left|B_{2 k}\right|(2 \pi)^{2 k}}{2(2 k)!}
$$

- The Riemann zeta function is more famous as a complex function, with powers k in the complex plane.

1.1 Riemann Zeta Function and Bernoulli numbers

- In 1859, Bernhard Riemann (1826-1866)

hypothesized a result related to the complex Riemann zeta function, namely, that all of its nontrivial zeroes lie on the line $x=1 / 2$.

1.1 Riemann Zeta Function and Bernoulli numbers

- The conjecture (Riemann hypothesis) has never been proven and remains one of the great unsolved problems of mathematics.

1.1 Riemann Zeta Function and Bernoulli numbers

- The conjecture (Riemann hypothesis) has never been proven and remains one of the great unsolved problems of mathematics.
- Mathematicians and mathematical physicists have developed a whole branch of mathematics contingent on the fact that the hypothesis is true, so that anyone who manages to uncover the proof will immediately verify thousands of results.

1.2 Fermat's last theorem and Bernoulli numbers

- Now, we look at an application of the Bernoulli numbers to one of the great solved problems of mathematics: the simply-stated Fermat's Last Theorem.

Theorem 4 (Fermat's last theorem)

The equation $x^{n}+y^{n}=z^{n}$ has no integer solutions x, y, z for positive integers $n>2$.

1.2 Fermat's last theorem and Bernoulli numbers

- Ernst Kummer's result was the product of another mathematician's mistake. German mathematician Ernst Kummer (1810-1893)

had spent little time on Fermat's Last Theorem, which he considered a "curiosity of number theory rather than a major item," until March 1847, when the French mathematician Gabriel Lamé (1795-1870) published a "complete proof" of the theorem.

1.2 Fermat's last theorem and Bernoulli numbers

- Lamé's main contribution was noticing the sum $x^{n}+y^{n}$ could be decomposed into factors involving the n roots of unity:

$$
(x+y)^{n}=(x+y)(x+\zeta y)\left(x+\zeta^{2} y\right) \cdots\left(x+\zeta^{n-2} y\right)\left(x+\zeta^{n-1} y\right)
$$

1.2 Fermat's last theorem and Bernoulli numbers

- This was a useful step; however, he incorrectly assumed that this factorization was unique in $\mathbb{Q}\left(\zeta_{p}\right)$. But Kummer himself had proven years prior that this was not the case. Kummer felt compelled to respond, and in the few weeks after Lamé's publication, he had a proof for a select group of integers n that would satisfy Fermat's Last Theorem. He called them the "regular primes."

1.2 Fermat's last theorem and Bernoulli numbers

Definition 5

Odd prime p is a regular prime if the class number of $\mathbb{Q}\left(\zeta_{p}\right)$ is relatively prime to p.

1.2 Fermat's last theorem and Bernoulli numbers

Definition 5

Odd prime p is a regular prime if the class number of $\mathbb{Q}\left(\zeta_{p}\right)$ is relatively prime to p.

- Note that, by definition, a class number is the order of the ideal class group $\mathbb{Z}\left(\zeta_{p}\right)$. But more intuitively, the class number can be understood as "a scalar quantity describing how 'close' elements of a ring of integers are to having unique factorization".

1.2 Fermat's last theorem and Bernoulli numbers

Definition 5

Odd prime p is a regular prime if the class number of $\mathbb{Q}\left(\zeta_{p}\right)$ is relatively prime to p.

- Note that, by definition, a class number is the order of the ideal class group $\mathbb{Z}\left(\zeta_{p}\right)$. But more intuitively, the class number can be understood as "a scalar quantity describing how 'close' elements of a ring of integers are to having unique factorization".
- If the class number is 1 , then the ring has unique factorization. For positive values greater than 1 , the closer to 1 the class number is the 'closer' to having prime factorization.

1.2 Fermat's last theorem and Bernoulli numbers

- Kummer proved an equivalent definition, which almost by magic, involves the Bernoulli numbers:

Definition 6

A regular prime p is an integer such that it does not divide the numerator of $B_{2}, B_{4}, B_{6}, \cdots B_{p-3}$.

1.2 Fermat's last theorem and Bernoulli numbers

- Kummer proved an equivalent definition, which almost by magic, involves the Bernoulli numbers:

Definition 6

A regular prime p is an integer such that it does not divide the numerator of $B_{2}, B_{4}, B_{6}, \cdots B_{p-3}$.

- Kummer proved Fermat's Last Theorem for all regular primes.

1.2 Fermat's last theorem and Bernoulli numbers

- Kummer proved an equivalent definition, which almost by magic, involves the Bernoulli numbers:

Definition 6

A regular prime p is an integer such that it does not divide the numerator of $B_{2}, B_{4}, B_{6}, \cdots B_{p-3}$.

- Kummer proved Fermat's Last Theorem for all regular primes.
- This, of course begs the question: how many regular primes are there?

1.2 Fermat's last theorem and Bernoulli numbers

- Kummer proved an equivalent definition, which almost by magic, involves the Bernoulli numbers:

Definition 6

A regular prime p is an integer such that it does not divide the numerator of $B_{2}, B_{4}, B_{6}, \cdots B_{p-3}$.

- Kummer proved Fermat's Last Theorem for all regular primes.
- This, of course begs the question: how many regular primes are there?
- We know that the first irregular prime is 37 , because

$$
\begin{equation*}
B_{32}=-\frac{7709321041217}{510}=37 \times \frac{208360028141}{510} \tag{4}
\end{equation*}
$$

1.2 Fermat's last theorem and Bernoulli numbers

- Beyond that, we know that there are infinitely many irregular primes, but it is not known if there are infinitely many regular primes. Computational studies have shown that about \%60 of primes are regular, and German mathematician Carl Ludwig Siegel (1896-1981) has conjectured that the exact proportion converges to $e^{-1 / 2}$. However, neither hypothesis has been confirmed.

1.2 Fermat's last theorem and Bernoulli numbers

- Regardless, Kummer's early work into Fermat's Last Theorem paved the way for mathematicians of the twentieth century to finish off the problem.

Table of contents

(1) About Bernoulli numbers and Bernoulli polynomials
(2) Bernoulli numbers/polynomials and consecutive power sums
(3) Diophantine equations with power sums
(4) On a Diophantine equation with power sums

- Linear forms in logarithms
(5) Formulas for $V_{2}\left(T_{k}(x)\right)$ and $V_{3}\left(T_{k}(x)\right)$
(6) The sketches for the proofs
(7) New results on the power values of the sum of three squares in arithmetic progression
(8) References

2. Bernoulli numbers/polynomials and consecutive power

sums

- Now, we consider a different type Diophantine equation. Before starting, we recall the following formulae.

2. Bernoulli numbers/polynomials and consecutive power

sums

- Now, we consider a different type Diophantine equation. Before starting, we recall the following formulae.
- The following formulae are concerning the sum of n-th powers of consecutive integers are well-known:

$$
\begin{gathered}
1+2+3+\ldots+n=\frac{n(n+1)}{2} \\
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \\
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
\end{gathered}
$$

2. Bernoulli numbers/polynomials and consecutive power

sums

- Now, we consider a different type Diophantine equation. Before starting, we recall the following formulae.
- The following formulae are concerning the sum of n-th powers of consecutive integers are well-known:

$$
\begin{gathered}
1+2+3+\ldots+n=\frac{n(n+1)}{2} \\
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \\
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
\end{gathered}
$$

- What is the formula for the following?

$$
1^{k}+2^{k}+3^{k}+\ldots+n^{k}=?
$$

2. Bernoulli numbers/polynomials and consecutive power

sums

- Now we need to introduce a family of numbers.

In 1713, Jacob Bernoulli defined a sequence of Bernoulli numbers B_{0}, B_{1}, B_{2}, \ldots is given with the recurrence relation
$(q+1) B_{q}=-\sum_{k=0}^{q-1}\binom{q+1}{k} B_{k}$
where $B_{0}=1$.

2. Bernoulli numbers/polynomials and consecutive power

sums

- Now we need to introduce a family of numbers.

In 1713, Jacob Bernoulli defined a sequence of Bernoulli numbers B_{0}, B_{1}, B_{2}, \ldots is given with the recurrence relation
$(q+1) B_{q}=-\sum_{k=0}^{q-1}\binom{q+1}{k} B_{k}$
where $B_{0}=1$.

- The first few Bernoulli numbers B_{q} are given as follows:

q	0	1	2	3	4	5	6	8	10	12	
B_{q}	1	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$	$\frac{-1}{30}$	$\frac{5}{66}$	$\frac{-691}{2730}$	

2. Bernoulli numbers/polynomials and consecutive power

sums

- The connection between Bernoulli polynomials and Bernoulli numbers is given with the relation

$$
\begin{equation*}
B_{q}(x)=\sum_{k=0}^{q}\binom{q}{k} B_{k} x^{q-k} \tag{6}
\end{equation*}
$$

2. Bernoulli numbers/polynomials and consecutive power

sums

- The connection between Bernoulli polynomials and Bernoulli numbers is given with the relation

$$
\begin{equation*}
B_{q}(x)=\sum_{k=0}^{q}\binom{q}{k} B_{k} x^{q-k} . \tag{6}
\end{equation*}
$$

- The first few Bernoulli polynomials B_{q} are given as follows:

$$
\begin{array}{r}
B_{0}(x)=1, \\
B_{1}(x)=x-\frac{1}{2}, \\
B_{2}(x)=x^{2}-x+\frac{1}{6}, \\
B_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x .
\end{array}
$$

2. Bernoulli numbers/polynomials and consecutive power

sums

- Now, by using the connection between Bernoulli polynomials and Bernoulli numbers we can give the following relation

$$
1^{k}+2^{k}+3^{k}+\ldots+x^{k}=\frac{1}{k+1}\left(B_{k+1}(x+1)-B_{k+1}\right)
$$

where $B_{k+1}(x+1)$ is $k+1$-st Bernoulli polynomial and B_{k+1} is $k+1$-st Bernoulli number.

2. Bernoulli numbers/polynomials and consecutive power

sums

- Now, by using the connection between Bernoulli polynomials and Bernoulli numbers we can give the following relation

$$
1^{k}+2^{k}+3^{k}+\ldots+x^{k}=\frac{1}{k+1}\left(B_{k+1}(x+1)-B_{k+1}\right)
$$

where $B_{k+1}(x+1)$ is $k+1$-st Bernoulli polynomial and B_{k+1} is $k+1$-st Bernoulli number.

- For example

$$
\begin{aligned}
& 1^{6}+2^{6}+3^{6}+\ldots+x^{6}=\frac{1}{7}\left(B_{7}(x+1)-B_{7}\right) \\
& =\frac{1}{42} x(2 x+1)(x+1)\left(3 x^{4}+6 x^{3}-3 x+1\right)
\end{aligned}
$$

2. Bernoulli numbers/polynomials and consecutive power sums

- So, for example, we can calculate the following sum

$$
1^{6}+2^{6}+3^{6}+\ldots+10^{6}=\frac{1}{7}\left(B_{7}(11)-B_{7}\right)=1978405
$$

Table of contents

(1) About Bernoulli numbers and Bernoulli polynomials

2 Bernoulli numbers/polynomials and consecutive power sums
(3) Diophantine equations with power sums
(4) On a Diophantine equation with power sums

- Linear forms in logarithms
(5) Formulas for $V_{2}\left(T_{k}(x)\right)$ and $V_{3}\left(T_{k}(x)\right)$
(6) The sketches for the proofs
(7) New results on the power values of the sum of three squares in arithmetic progression
(8) References

3. Diophantine equations with power sums

- Now we consider the Diophantine equation

$$
\begin{equation*}
S_{k}(x)=y^{n} \tag{7}
\end{equation*}
$$

where $n \geq 2, k, n, x, y \in \mathbb{Z}^{+}$and

$$
\begin{equation*}
S_{k}(x)=1^{k}+2^{k}+\cdots+x^{k} \tag{8}
\end{equation*}
$$

3. Diophantine equations with power sums

3.1 Early results

- The first work on this equation was done in 1875. The classical question of Lucas was whether equation

$$
\begin{equation*}
1^{2}+2^{2}+\ldots+x^{2}=y^{2} \tag{9}
\end{equation*}
$$

has only the solutions $x=y=1$ and $x=24, y=70$.

3. Diophantine equations with power sums

3.1 Early results

- The first work on this equation was done in 1875. The classical question of Lucas was whether equation

$$
\begin{equation*}
1^{2}+2^{2}+\ldots+x^{2}=y^{2} \tag{9}
\end{equation*}
$$

has only the solutions $x=y=1$ and $x=24, y=70$.

- In 1918, Watson proved that equation (9) has no solution other than $(x, y)=(1,1)$ and $(24,70)$.

3. Diophantine equations with power sums

3.1 Early results

- In 1956, Schäffer gave important results on the equation

$$
1^{k}+2^{k}+\cdots+x^{k}=y^{n}
$$

So, this equation is called "Schäffer's equation".

3. Diophantine equations with power sums

3.2 Schäffer's conjecture

Lemma 1 (Schäffer, 1956)

If $k=1$, then $S_{1}(x)=\frac{x(x+1)}{2}$. While, if $k \neq 1$, we can write

$$
S_{k}(x)=\left\{\begin{array}{l}
\frac{x^{2}(x+1)^{2} R_{k}(x)}{C_{k}}, \text { if } k>1 \text { odd } \tag{10}\\
\frac{x(x+1)(2 x+1) R_{k}(x)}{C_{k}}, \quad \text { if } k \geq 2 \text { even. }
\end{array}\right.
$$

($C_{k}>0, C_{k} \in \mathbb{Z}$ and $R_{k}(x)$ is a polynomial with integer coefficient)

3. Diophantine equations with power sums

3.2 Schäffer's conjecture

He proved the following:

Theorem 2 (Schäffer, 1956)

For fixed $k \geq 1$ and $n \geq 2$, the eq. (7) has at most finitely many solutions in positive integers x and y, unless

$$
\begin{equation*}
(k, n) \in\{(1,2),(3,2),(3,4),(5,2)\}, \tag{11}
\end{equation*}
$$

where, in each case, there are infinitely many such solutions.

3. Diophantine equations with power sums

3.2 Schäffer's conjecture

- Schäffer proved that the eq. (7) has finitely many solutions in the each following cases.

$$
\begin{array}{|cc|}
\hline \hline k \in\{1,3,5\} & n=4 \\
k=3 & n=8 \\
k \in\{4,6,8,9,10\} & n=2 \\
k \leq 11 & n \in\{3,5\} \\
k \leq 11, k \neq 10 & n \in\{29,41,53,113,173,281,509,641\} \\
\hline \hline
\end{array}
$$

3. Diophantine equations with power sums

3.2 Schäffer's conjecture

- Schäffer proved that the eq. (7) has finitely many solutions in the each following cases.

$k \in\{1,3,5\}$	$n=4$
$k=3$	$n=8$
$k \in\{4,6,8,9,10\}$	$n=2$
$k \leq 11$	$n \in\{3,5\}$
$k \leq 11, k \neq 10$	$n \in\{29,41,53,113,173,281,509,641\}$

- In the terminology of his work, $(x, y)=(1,1)$ was called as "trivial solution", $(x, y)=(24,70)$ was called as "non-trivial solution" with $(k, n)=(2,2)$.

3. Diophantine equations with power sums

3.2 Schäffer's conjecture

Schäffer gave the following conjecture:

Conjecture 1 (Schäffer,1956)

Let $k \geq 1$ be fixed and let $n \geq 2$ be positive integers with (k, n) not in the above list. Then the eq. (7) has only non-trivial solution $(k, n, x, y)=(2,2,24,70)$ tir.

3. Diophantine equations with power sums

3.2-1 Some generalizations on Schäffer's equation

Schäffer's proof used an ineffective method due to Thue and Siegel so his result is also ineffective. This means that the proof does not provide any algorithm to find all solutions.
Applying Baker's method, Győry, Tijdeman and Voorhoeve proved a more general and effective result in which the exponent n is also unknown.

Theorem 3 (Györy, Tijdeman and Voorhoeve, 1980)

Let $k \geq 2$ and r be fixed integers with $k \notin\{3,5\}$ if $r=0$, and let s be a square-free odd integer. Then the equation

$$
s\left(1^{k}+2^{k}+\ldots+x^{k}\right)+r=y^{n}
$$

in positive integers $x, y \geq 2, n \geq 2$ has only finitely many solutions and all these can be effectively determined.

Of particular importance is the special case when $s=1$ and $r=0$.

3. Diophantine equations with power sums

3.2-1 Some generalizations on Schäffer's equation

Corollary 4 (Győry, Tijdeman and Voorhoeve, 1980)

For given $k \geq 2$ with $k \notin\{3,5\}$, equation (7) has only finitely many solutions in integers $x, y \geq 1, n \geq 2$, and all these can be effectively determined.

The following striking result is due to Voorhoeve, Győry and Tijdeman:

Theorem 5 (Voorhoeve, Györy and Tijdeman, 1979)

Let $R(x)$ be a fixed polynomial with integer coefficients and let $k \geq 2$ be a fixed integer such that $k \notin\{3,5\}$. Then the equation

$$
1^{k}+2^{k}+\ldots+x^{k}+R(x)=b y^{n}
$$

in integers $x, y \geq 2, n \geq 2$ has only finitely many solutions, and an effective upper bound can be given for n.

3. Diophantine equations with power sums

3.2-1 Some generalizations on Schäffer's equation

Later, various generalizations and analogues of Győry, Tijdeman and Voorhoeve have been established by several authors (Brindza, Pintér, Dilcher, Urbanowicz, Kano \cdots). For a survey of these results we refer to the paper of Győry and Pintér and the references given there.

3. Diophantine equations with power sums

3.2 Schäffer's conjecture

- In the last 50 years, the various generalizations of Schäffer's equation were considered, but the none of them couldn't do any progress on the conjecture. The first progress was recorded in 2003 with the following result:

3. Diophantine equations with power sums

3.2 Schäffer's conjecture

- In the last 50 years, the various generalizations of Schäffer's equation were considered, but the none of them couldn't do any progress on the conjecture. The first progress was recorded in 2003 with the following result:

Theorem 6 (Jacobson, Pintér and Walsh, 2003)

For $n=2$ and even values of k with $k \leq 58$, eq. (7) has only the trivial solution except in the case $k=2$, when there is the anomalous solution $(x, y)=(24,70)$.

3. Diophantine equations with power sums
 3.2 Schäffer's conjecture

- Finding all solutions of the eq. (7) is a hard problem because n is not fixed. Next year, the following nice result was given by Bennett, Györy and Pintér:

3. Diophantine equations with power sums

3.2 Schäffer's conjecture

- Finding all solutions of the eq. (7) is a hard problem because n is not fixed. Next year, the following nice result was given by Bennett, Györy and Pintér:

Theorem 7 (Bennett, Győry and Pintér, 2004)

For $1 \leq k \leq 11$ and (k, n) not in the set (11), equation (7) has only the trivial solution, unless $k=2$, in which case there is the additional solution $(n, x, y)=(2,24,70)$.

3. Diophantine equations with power sums

3.2 Schäffer's conjecture

4 years later, using several currently available techniques, including Baker's method, Frey curves and modular forms, Pintér gave the following result about Schäffer's conjecture:

Theorem 8 (Pintér, 2007)

For odd values of k, with $1 \leq<k<170$, the equation

$$
S_{k}(x)=y^{2 n}, \text { in positive integers } x, y, n \text { with } n>2
$$

possesses only the trivial solution $(x, y)=(1,1)$.

3. Diophantine equations with power sums

3.2 Schäffer's conjecture

- In 2015, a new progress on Schäffer's conjecture was recorded by Hajdu. We first recall that $v_{p}(N)$ stands for the exponent of the prime p in the prime factorization of the positive integer N.

3. Diophantine equations with power sums

3.2 Schäffer's conjecture

- In 2015, a new progress on Schäffer's conjecture was recorded by Hajdu. We first recall that $v_{p}(N)$ stands for the exponent of the prime p in the prime factorization of the positive integer N.
- Hajdu gave the following lemmas for his main theorem:

Lemma 9 (Hajdu, 2015)

Let x be a positive integer. Then we have

$$
v_{2}\left(S_{k}(x)\right)= \begin{cases}v_{2}(x(x+1))-1, & \text { if } k=1 \text { or } k \text { is even } \\ 2 v_{2}(x(x+1))-2, & \text { if } k \geq 3 \text { is odd. }\end{cases}
$$

3. Diophantine equations with power sums

3.2 Schäffer's conjecture

Lemma 10 (Hajdu, 2015)

Let x be a positive integer. Then we have

$$
v_{3}\left(S_{k}(x)\right)=\left\{\begin{array}{l}
v_{3}(x(x+1)), \text { if } k=1, \\
v_{3}(x(x+1)(2 x+1))-1, \text { if } k \text { is even, } \\
0, \text { if } x \equiv 1 \quad(\bmod 3) \text { and } k \geq 3 \text { is odd } \\
v_{3}\left(k x^{2}(x+1)^{2}\right)-1, \text { if } x \equiv 0,2 \quad(\bmod 3) \text { and } \\
k \geq 3 \text { is odd. }
\end{array}\right.
$$

3. Diophantine equations with power sums

3.2 Schäffer's conjecture

Finally, by using the aboved Lemmas, Hajdu gave the following result about Schäffer's conjecture:

Theorem 11 (Hajdu, 2015)

Suppose that $x \equiv 0,3(\bmod 4)$ and $x<25$. Then the eq. (7) has only known solutions.

3. Diophantine equations with power sums

3.2 Schäffer's conjecture

The next year, these results were extended by Bérczes, Hajdu, Miyazaki and Pink.

Theorem 12 (Bérczes, Hajdu, Miyazaki and Pink, 2016)

All solutions of equation (7) in positive integers k, n, x, y with $x<25$ and $n \geq 3$ are given by

$$
(k, n, x, y)=(k, n, 1,1),(3,4,8,6) .
$$

3. Diophantine equations with power sums

3.2 Schâffer's conjecture

The next year, these results were extended by Bérczes, Hajdu, Miyazaki and Pink.

Theorem 12 (Bérczes, Hajdu, Miyazaki and Pink, 2016)

All solutions of equation (7) in positive integers k, n, x, y with $x<25$ and $n \geq 3$ are given by

$$
(k, n, x, y)=(k, n, 1,1),(3,4,8,6) .
$$

As a simple consequence they obtain the following immediate:

Corollary 13 (Bérczes, Hajdu, Miyazaki and Pink, 2016)

For $x<25$ and $n \geq 3$, Schaffer's conjecture is true.

Table of contents

(1) About Bernoulli numbers and Bernoulli polynomials

2 Bernoulli numbers/polynomials and consecutive power sums
(3) Diophantine equations with power sums
4. On a Diophantine equation with power sums

- Linear forms in logarithms
(5) Formulas for $V_{2}\left(T_{k}(x)\right)$ and $V_{3}\left(T_{k}(x)\right)$
(6) The sketches for the proofs
(7) New results on the power values of the sum of three squares in arithmetic progression
(8) References

3.1 Old results on a Diophantine equation with power sums

- Now we consider the eq.

$$
\begin{equation*}
T_{k, \ell}(x)=y^{n} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{k, \ell}(x)=(x+1)^{k}+(x+2)^{k}+\ldots+(\ell x)^{k}, \quad k, \ell \in \mathbb{Z}^{+} \tag{13}
\end{equation*}
$$

3.1 Old results on a Diophantine equation with power sums

- Now we consider the eq.

$$
\begin{equation*}
T_{k, \ell}(x)=y^{n} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{k, \ell}(x)=(x+1)^{k}+(x+2)^{k}+\ldots+(\ell x)^{k}, \quad k, \ell \in \mathbb{Z}^{+} \tag{13}
\end{equation*}
$$

- In 2013, Zhang and Bai worked the eq. (12) for the case $k=\ell=2$ and they gave the following:

Theorem 14 (Bai and Zhang, 2013)

For $n>1$ all solutions of the eq. (12) are $(x, y)=(0,0),(x, y, n)=(1, \mp 2,2),(2, \mp 5,2),(24, \mp 182,2)$ or for $2 \nmid n$ the only solution is $(x, y)=(-1,-1)$.

3.1 Old results on a Diophantine equation with power sums

Theorem 15 (Soydan, 2017)

Let $k, \ell \geq 2$ fixed integers. Then all solutions of the equation $(x+1)^{k}+(x+2)^{k}+\ldots+(\ell x)^{k}=y^{n}$ in integers $x, y \geq 1$ and $n \geq 2$ satisfy $n<C_{1}$ where C_{1} is an effectively computable constant depending only on ℓ and k.

3.1 Old results on a Diophantine equation with power sums

Theorem 15 (Soydan, 2017)

Let $k, \ell \geq 2$ fixed integers. Then all solutions of the equation $(x+1)^{k}+(x+2)^{k}+\ldots+(\ell x)^{k}=y^{n}$ in integers $x, y \geq 1$ and $n \geq 2$ satisfy $n<C_{1}$ where C_{1} is an effectively computable constant depending only on ℓ and k.

Theorem 16 (Soydan, 2017)

Let $k, \ell \geq 2$ fixed integers such that $k \neq 3$. Then all solutions of the equation $(x+1)^{k}+(x+2)^{k}+\ldots+(\ell x)^{k}=y^{n}$ in integers x, y, n with $x, y \geq 1, n \geq 2$, and $\ell \equiv 0(\bmod 2)$ satisfy $\max \{x, y, n\}<C_{2}$ where C_{2} is an effectively computable constant depending only on ℓ and k.

3.1 Old results on a Diophantine equation with power sums

Theorem 15 (Soydan, 2017)

Let $k, \ell \geq 2$ fixed integers. Then all solutions of the equation $(x+1)^{k}+(x+2)^{k}+\ldots+(\ell x)^{k}=y^{n}$ in integers $x, y \geq 1$ and $n \geq 2$ satisfy $n<C_{1}$ where C_{1} is an effectively computable constant depending only on ℓ and k.

Theorem 16 (Soydan, 2017)

Let $k, \ell \geq 2$ fixed integers such that $k \neq 3$. Then all solutions of the equation $(x+1)^{k}+(x+2)^{k}+\ldots+(\ell x)^{k}=y^{n}$ in integers x, y, n with $x, y \geq 1, n \geq 2$, and $\ell \equiv 0(\bmod 2)$ satisfy $\max \{x, y, n\}<C_{2}$ where C_{2} is an effectively computable constant depending only on ℓ and k.

- By Theorem 16 , it was proved that this equation has finitely many solutions where $k \neq 1,3, \ell$ is even, $n \geq 2$ and $x, y, k, n \in \mathbb{Z}^{+}$and it has infinitely many solutions where $n=2$ and $k=1,3$.

3.1.1 Sketch for the Proofs of Theorems 15-16

- We need some lemmas for proving Theorems 15-16

Lemma 7

$$
(x+1)^{k}+(x+2)^{k}+\ldots+(\ell x)^{k}=\frac{B_{k+1}(\ell x+1)-B_{k+1}(x+1)}{k+1} \text { where }
$$

$$
B_{q}(x)=x^{q}-\frac{1}{2} q x^{q-1}+\frac{1}{6}\binom{q}{2} x^{q-2}+\ldots=\sum_{i=0}^{q}\binom{q}{i} B_{i} x^{q-i}
$$

is the q-th Bernoulli polynomial.

3.1.1 Sketch for the Proofs of Theorems 15-16

Lemma 8 (Brindza, 1984)

Let $H(x) \in \mathbb{Q}[x]$,

$$
H(x)=a_{0} x^{N}+\ldots+a_{N}=a_{0} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)^{r_{i}},
$$

with $a_{0} \neq 0$ and $\alpha_{i} \neq \alpha_{j}$ for $i \neq j$. Let $b \neq 0 \in \mathbb{Z}, 2 \leq m \in \mathbb{Z}$ and define $t_{i}=\frac{m}{\left(m, r_{i}\right)}$. Suppose that $\left\{t_{1}, \ldots t_{n}\right\}$ is not a permutation of the n-tuples
(a) $\{t, 1, \ldots, 1\}, t \geq 1$;
(b) $\{2,2,1, \ldots, 1\}$ Then all solutions $(x, y) \in \mathbb{Z}^{2}$ of the equation

$$
H(x)=b y^{m}
$$

satisfy $\max \{|x|,|y|\}<C$, where C is effectively computable constant depending only on H, b and m.

3.1.1 Sketch for the Proofs of Theorems 15-16

Lemma 9 (Schinzel \& Tijdeman, 1976)

Let $f(x) \in \mathbb{Q}[x]$ be a polynomial having at least 2 distinct roots. Then there exists an effective constant $N(f)$ such that any solution of the equation $f(x)=y^{n}$ in $x, n \in \mathbb{Z}, y \in \mathbb{Q}$ satisfies $n \leq N(f)$.

3.1.1 Sketch for the Proofs of Theorems 15-16

Lemma 9 (Schinzel \& Tijdeman, 1976)

Let $f(x) \in \mathbb{Q}[x]$ be a polynomial having at least 2 distinct roots. Then there exists an effective constant $N(f)$ such that any solution of the equation $f(x)=y^{n}$ in $x, n \in \mathbb{Z}, y \in \mathbb{Q}$ satisfies $n \leq N(f)$.

Lemma 10 (Schinzel-Tijdeman, 1976)

Let $f(x) \in \mathbb{Q}[x]$ be a polynomial having at least 3 simple roots. Then the equation $f(x)=y^{n}$ has at most finitely many solutions in $x, n \in \mathbb{Z}, y \in \mathbb{Q}$ satisfying $n>1$. If $f(x)$ has 2 simple roots then the equation $f(x)=y^{n}$ has only finitely many solutions with $n>2$. In both cases the solutions can be explicitly determined.

3.1.1 Sketch for the Proofs of Theorems 15-16

- Now we need two key lemmas:

Lemma 11 (Soydan, 2017)

For $k \in \mathbb{Z}^{+}$let $B_{k}(x)$ be the k-th Bernoulli polynomial. Then the polynomial

$$
G(x)=\frac{B_{k+1}(\ell x+1)-B_{k+1}(x+1)}{k+1}
$$

has at least two distinct zeros where $G(x)=y^{n}$.

3.1.1 Sketch for the Proofs of Theorems 15-16

Lemma 12 (Soydan, 2017)

For $q \geq 2$ let $B_{q}(x)$ be the q-th Bernoulli polynomial. Let

$$
\begin{equation*}
P(x)=B_{q}(\ell x+1)-B_{q}(x+1) \tag{14}
\end{equation*}
$$

where ℓ is even. Then
(i) $P(x)$ has at least three zeros of odd multiplicity unless $q \in\{2,4\}$.
(ii) For any odd prime p, at least two zeros of $P(x)$ have multiplicities relatively prime to p.

3.1.1 Sketch for the Proofs of Theorems 15-16

The idea for the proof of Theorem 15:

Let $x, y \geq 1$ and $n \geq 2$ be an arbitrary solution of the equation

$$
\begin{equation*}
T_{k, \ell}(x)=y^{n} \tag{15}
\end{equation*}
$$

where

$$
T_{k, \ell}(x)=(x+1)^{k}+(x+2)^{k}+\ldots+(\ell x)^{k}, k, \ell \in \mathbb{Z}^{+} .
$$

in integers. We know from Lemma 11 that $T_{k, \ell}(x)$ has at least two distinct zeros. Hence it follows from the equation (15) by applying Lemma 9 (Schinzel \& Tijdeman, 1976) that we get an effective bound for n.

3.1.1 Sketch for the Proofs of Theorems 15-16

The idea for the proof of Theorem 16:

We know from Theorem 15 that n is bounded, i.e. $n<C_{1}$ with an effectively computable C_{1}. So we may assume that n is fixed. Using Lemma 8 (Brindza, 1984) and Lemma 12 (Soydan, 2017), we can prove the rest of the part of the theorem.

3.2 New results on a Diophantine equation with power sums

- Consider $T_{k, \ell}(x)=(x+1)^{k}+(x+2)^{k}+\cdots+(\ell x)^{k}$. We have $T_{k, \ell}(x)=B_{k+1}(\ell x+1)-B_{k+1}(x+1)$, where

$$
B_{q}(x)=x^{q}-\frac{1}{2} q x^{q-1}+\frac{1}{6}\binom{q}{2} x^{q-2}+\cdots=\sum_{i=0}^{q}\binom{q}{i} x^{q-i} B_{i}
$$

is the q-th Bernoulli polynomial with $q=k+1$. Therefore,

3.2 New results on a Diophantine equation with power sums

- Consider $T_{k, \ell}(x)=(x+1)^{k}+(x+2)^{k}+\cdots+(\ell x)^{k}$. We have $T_{k, \ell}(x)=B_{k+1}(\ell x+1)-B_{k+1}(x+1)$, where

$$
B_{q}(x)=x^{q}-\frac{1}{2} q x^{q-1}+\frac{1}{6}\binom{q}{2} x^{q-2}+\cdots=\sum_{i=0}^{q}\binom{q}{i} x^{q-i} B_{i}
$$

is the q-th Bernoulli polynomial with $q=k+1$. Therefore,

$$
\begin{aligned}
& T_{k, \ell}(x)=\sum_{i=0}^{k+1}\binom{k+1}{i}(\ell x+1)^{k+1-i} B_{i}-\sum_{i=0}^{k+1}\binom{k+1}{i}(x+1)^{k+1-i} B_{i}= \\
& \left(\ell^{k+1}-1\right) x^{k+1}+\frac{(k+1)}{2}\left(\ell^{k}-1\right) x^{k}+\frac{(k+1) k}{12}\left(\ell^{k-1}-1\right) x^{k-1}+\cdots
\end{aligned}
$$

Note that $T_{k, \ell}(0)=0$ and the multiplicity of 0 as root of $T_{k, \ell}(x)$ is 1 if $k+1$ is odd and 2 if $k+1$ is even.

3.2 New results on a Diophantine equation with power sums

Proposition 17 (Bartoli and Soydan, 2020)

The polynomial $T_{k, \ell}(x)$ has at least three distinct roots.

3.2 New results on a Diophantine equation with power sums

Proposition 17 (Bartoli and Soydan, 2020)

The polynomial $T_{k, \ell}(x)$ has at least three distinct roots.

Proof.

Let 0 be a root of multiplicity $r=1,2$ of $T_{k, \ell}(x)$ and suppose that $T_{k, \ell}(x)$ has only two distinct roots. Then

$$
\frac{T_{k, \ell}(x)}{\ell^{k+1}-1}=x^{r}(x+\alpha)^{k+1-r}
$$

for some α. This means that
$\alpha(k+1-r)=\frac{(k+1)\left(\ell^{k}-1\right)}{2\left(\ell^{k+1}-1\right)}$,

$$
\alpha^{2}\binom{k+1-r}{2}=\frac{(k+1) k\left(\ell^{k-1}-1\right)}{12\left(\ell^{k+1}-1\right)} .
$$

From here, using some inequalities, we get a contradiction. So the proof is completed.

3.2 New results on a Diophantine equation with power sums

Theorem 18 (Bartoli and Soydan, 2020)

Let k, ℓ be fixed integers such that $k \geq 2, k \neq 3, \ell \geq 2$. Then all solutions of equation

$$
\begin{equation*}
(x+1)^{k}+(x+2)^{k}+\ldots+(\ell x)^{k}=y^{n} \tag{16}
\end{equation*}
$$

in integers x, y, n with $x, y \geq 1, n \geq 2$ satisfy $\max \{x, y, n\}<C$ where C is an effectively computable constant depending only on ℓ and k.

3.2.1 Sketch for the Proof of Theorem 18

We distinguish the cases $k+1$ odd and $k+1$ even.
Case 1: We suppose that $k+1$ is odd and then the multiplicity of the root 0 is $r=1$. Then $t_{0}=\frac{n}{(n, 1)}=n$.
Also, using that $\sum_{i=0}^{k-1}\binom{k}{i} B_{i}=0$, the term of degree of 1 of $T_{k, \ell}(x)$ is

$$
\begin{aligned}
& (\ell-1) \sum_{i=0}^{k}\binom{k+1}{i}(k+1-i) B_{i} \\
& =(k+1)(\ell-1) \sum_{i=0}^{k}\binom{k}{i} B_{i} \\
& =(k+1)(\ell-1) B_{k} \neq 0,
\end{aligned}
$$

where B_{i} is i-th Bernoulli number.

3.2.1 Sketch for the Proof of Theorem 18

(i) Suppose $n \nmid k$.

Since k is even and $n \nmid k$, the case $n=2$ is impossible. Therefore $n>2$ since k is even and then there exists at least one root distinct from 0 such that $n \nmid r_{i}$, where r_{i} is its multiplicity. This yields $t_{i}=\frac{n}{\left(n, r_{i}\right)} \neq 1$ and therefore the bad patterns in Lemma 8 [Brindza, 1984] are avoided.
(ii) Suppose $n \mid k$.

If all the roots of the polynomial $T_{k, \ell}(x)$ have multiplicity r_{i} divisible by n, then $T_{k, \ell}(x) / x=\left(\ell^{k+1}-1\right) f(x)^{n}$, where $f(x)=x^{s}+\sum_{i=0}^{s-1} \alpha_{i} x^{i}$, with $k=n s$. Since all coefficients of $T_{k, \ell}(x) /\left(x\left(\ell^{k+1}-1\right)\right)$ are rational, $f(x)$ also must have rational coefficients. So the term α_{0} is rational and $\alpha_{0}^{n}=(k+1)(\ell-1) B_{k} /\left(\ell^{k+1}-1\right)$.
According to the von Staudt-Clausen theorem, if $B_{k} \neq 0$ then 2 divides the denominator but 4 does not divide. In this case, if 2^{a} is the highest power that divides $\ell-1$, then 2^{a} is the highest power which also divides $\ell^{k+1}-1$. Therefore 2 divides and 4 does not divide the denominator of α_{0}^{n} which is a contradiction.

3.2.1 Sketch for the Proof of Theorem 18

If there exists at least one root having multiplicity r_{i} not divisible by n, then the pattern does not correspond to $(n, 1,1,1,1 \ldots)$. So this case is completed.

Case 2: Now suppose that $k+1$ is even and then the multiplicity of the root 0 is $r=2$. Then $t_{0}=\frac{n}{(n, 2)} \in\{n / 2, n\}$. Also, $B_{k-1} \neq 0$ and the term of degree 2 in $T_{k, \ell}(x)$ is given by

$$
\begin{aligned}
& \left(\ell^{2}-1\right) \sum_{i=0}^{k-1}\binom{k+1}{i}\binom{k+1-i}{2} B_{i}=\binom{k+1}{2}\left(\ell^{2}-1\right) \sum_{i=0}^{k-1}\binom{k-1}{i} B_{i} \\
& =\binom{k+1}{2}\left(\ell^{2}-1\right) B_{k-1} \neq 0 .
\end{aligned}
$$

3.2.1 Sketch for the Proof of Theorem 18

(i) Suppose $n \mid(k-1)$.

If there exists at least one root having multiplicity r_{i} not divisible by n, then the pattern does not correspond to $(n, 1,1,1,1, \ldots)$.
If all the roots of the polynomial $T_{k, \ell}(x)$ have multiplicity r_{i} divisible by n, then $T_{k, \ell}(x) /\left(x^{2}\left(\ell^{k+1}-1\right)\right)$ must be a monic polynomial which is also an n-power, then $T_{k, \ell}(x) / x^{2}=\left(\ell^{k+1}-1\right) f(x)^{n}$, where $f \in \mathbb{Q}[x]$.
By the von Staudt-Clausen theorem again, a prime p divides the denominator of B_{k-1} if and only if $(p-1) \mid(k-1)$ and the denominator is square-free.
Suppose that $2^{e} \|(k+1) / 2$, that is $2^{e} \mid(k+1) / 2$ and $2^{e+1} \nmid(k+1) / 2$. Then

$$
\frac{k+1}{2} \equiv 2^{e} \quad\left(\bmod 2^{e+1}\right)
$$

Now assume that ℓ is odd.

3.2.1 Sketch for the Proof of Theorem 18

Then

$$
\ell^{2}=1+8 t \quad\left(\bmod 2^{e+1}\right)
$$

therefore

$$
\begin{aligned}
& \frac{\ell^{2}-1}{\ell^{k+1}-1}=\frac{1}{\ell^{k-1}+\ell^{k-3}+\ell^{k-5}+\cdots+\ell^{2}+1}=\frac{1}{z} \\
& z \equiv 1+(1+8 t)+(1+8 t)^{2}+(1+8 t)^{3}+\cdots+(1+8 t)^{(k-1) / 2} \\
& \equiv \frac{(1+8 t)^{(k+1) / 2}-1}{8 t}\left(\bmod 2^{e+1}\right) \\
& \equiv \frac{\frac{k+1}{2} 8 t+\frac{k^{2}-1}{8}(8 t)^{2}+\cdots}{8 t}\left(\bmod 2^{e+1}\right) \\
& \equiv \cdots \equiv \frac{k+1}{2}\left(\bmod 2^{e+1}\right) \equiv 2^{e}\left(\bmod 2^{e+1}\right) .
\end{aligned}
$$

where

3.2.1 Sketch for the Proof of Theorem 18

Thus $2^{e} \| z$ and then 2 is the highest power of 2 dividing the denominator of

$$
\binom{k+1}{2} \frac{\ell^{2}-1}{\ell^{k+1}-1} B_{k-1}
$$

This is not possible since

$$
\alpha_{0}^{n}=\binom{k+1}{2} \frac{\ell^{2}-1}{\ell^{k+1}-1} B_{k-1}
$$

Since the case when ℓ is even for the equation (15) has already been considered in [Soydan, 2017], the proof of case (i) is completed.

3.2.1 Sketch for the Proof of Theorem 18

(ii) Suppose $n \nmid(k-1)$. Then n must be at least 3 , since $k-1$ is even.

If $n=3$, then $t_{0}=\frac{n}{(n, 2)}=3$ and there exists at least one root distinct from 0 such that $n \nmid r_{i}$, where r_{i} is its multiplicity. This yields $t_{i}=\frac{n}{\left(n, r_{i}\right)} \neq 1$ and therefore the bad patterns are avoided.

If $n=4$, then $t_{0}=\frac{n}{(n, 2)}=2$. Since $n \nmid k-1$, it can be still possible that there exists a unique root of multiplicity r_{i}, not divisible by 4 , but divisible by 2 , and all the other multiplicities are divisible by 4 . So we can write $T_{k, \ell}(x) / x^{2}=\left(\ell^{k+1}-1\right) f(x)^{2}$ where $f \in \mathbb{Q}[x]$, since $T_{k, \ell}(x)$ has, apart from 0 , one root of multiplicity 2 , and all the other multiplicities are divisible by 4 .

3.2.1 Sketch for the Proof of Theorem 18

Here we distinguish two cases. First we suppose that ℓ is odd. Then, following the steps in Case 2 (i), we get that 2 is the highest power of 2 dividing the denominator of

$$
\binom{k+1}{2} \frac{\ell^{2}-1}{\ell^{k+1}-1} B_{k-1}
$$

which contradicts with

$$
\alpha_{0}^{2}=\binom{k+1}{2} \frac{\ell^{2}-1}{\ell^{k+1}-1} B_{k-1}
$$

The case when ℓ is even has been considered in [Soydan, 2017]. So the proof of the case (ii) with $n=4$ is completed.

3.2.1 Sketch for the Proof of Theorem 18

If $n>4$, then $t_{0}=\frac{n}{(n, 2)}>2$, and there exists at least one root distinct from 0 such that $n \nmid r_{i}$, where r_{i} is its multiplicity. This yields $t_{i}=\frac{n}{\left(n, r_{i}\right)} \neq 1$ and therefore the bad patterns are avoided. This finishes the proof of the theorem.
5. A computational approach to a Diophantine equation with power sums
5.1 The main results

- Now, we are interested in the integer solutions of the eq.

$$
\begin{equation*}
T_{k}(x)=y^{n} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{k}(x)=(x+1)^{k}+(x+2)^{k}+\ldots+(2 x)^{k} . \tag{18}
\end{equation*}
$$

5. A computational approach to a Diophantine equation with power sums
 5.1 The main results

- Now, we are interested in the integer solutions of the eq.

$$
\begin{equation*}
T_{k}(x)=y^{n} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{k}(x)=(x+1)^{k}+(x+2)^{k}+\ldots+(2 x)^{k} . \tag{18}
\end{equation*}
$$

- By Theorem 16, this eq. has finitely many solutions. Here we first provide upper bounds for the exponent n in equation (17) in terms of 2 and 3 -valuations v_{2} and v_{3} of some functions of x and x, k.

5. A computational approach to a Diophantine equation with power sums

5.1 The main results

Theorem 19 (Bérczes, Pink, Savaș and Soydan, 2018)

(i) Assume first that $x \equiv 0(\bmod 4)$. Then for any solution (k, n, x, y) of equation (17), we get

$$
n \leq \begin{cases}v_{2}(x)-1, & \text { if } k=1 \text { or } k \text { is even } \\ 2 v_{2}(x)-2, & \text { if } k \geq 3 \text { is odd } .\end{cases}
$$

5.1 The main results

(ii)Assume that $\mathrm{x} \equiv 1(\bmod 4)$ and $k=1$, then for any solution (k, n, x, y) of equation (17), we get $n \leq v_{2}(3 x+1)-1$.
Suppose next that $x \equiv 1,5(\bmod 8)$ and $x \not \equiv 1(\bmod 32)$ with $k \neq 1$. Then for any solution (k, n, x, y) of equation (17), we get
$n \leq\left\{\begin{array}{cl}v_{2}(7 x+1)-1, & \text { if } x \equiv 1 \quad(\bmod 8) \text { and } k=2, \\ v_{2}((5 x+3)(3 x+1))-2, & \text { if } x \equiv 1 \quad(\bmod 8) \text { and } k=3, \\ v_{2}(3 x+1), & \text { if } x \equiv 5 \quad(\bmod 8) \text { and } k \geq 3 \text { is odd, } \\ 1, & \text { if } x \equiv 5 \quad(\bmod 8) \text { and } k \geq 2 \text { is even, } \\ 2, & \text { if } x \equiv 9 \quad(\bmod 16) \text { and } k \geq 4 \text { is even, } \\ 3, & \text { if } x \equiv 9 \quad(\bmod 16) \text { and } k \geq 5 \text { is odd } \\ & \text { or } \\ & \text { if } x \equiv 17 \quad(\bmod 32) \text { and } k \geq 4 \text { is even, } \\ 4, & \text { if } x \equiv 17 \quad(\bmod 32) \text { and } k \geq 5 \text { is odd. }\end{array}\right.$

5. A computational approach to a Diophantine equation

 with power sums
5.1 The main results

(iii)Suppose now that $x \equiv 0(\bmod 3)$ and k is odd or $x \equiv 0,4(\bmod 9)$ and $k \geq 2$ is even. Then for any solution (k, n, x, y) of equation (17),

$$
n \leq\left\{\begin{array}{cl}
v_{3}(x), & \text { if } x \equiv 0 \quad(\bmod 3) \text { and } k=1, \\
v_{3}(x)-1, & \text { if } x \equiv 0 \quad(\bmod 9) \text { and } k \geq 2 \text { is even, } \\
v_{3}\left(k x^{2}\right), & \text { if } x \equiv 0 \quad(\bmod 3) \text { and } k>3 \text { is odd, } \\
v_{3}\left(x^{2}(5 x+3)\right), & \text { if } x \equiv 0 \quad(\bmod 3) \text { and } k=3 \\
v_{3}(2 x+1)-1, & \text { if } x \equiv 4 \quad(\bmod 9) \text { and } k \geq 2 \text { is even. }
\end{array}\right.
$$

5. A computational approach to a Diophantine equation with power sums
 5.1 The main results

Combining effective upper bounds are concerning n and Baker's theory (using M. Laurent's results) we have following results:

Theorem 20 (Bérczes, Pink, Savaș and Soydan, 2018)

Assume that $x \equiv 1,4(\bmod 8)$ or $x \equiv 4,5(\bmod 8)$. Then Eq. (17) has no solution with $k=1$ or $k \geq 2$ is even, respectively.

Theorem 21 (Bérczes, Pink, Savaş and Soydan, 2018)

Consider equation (17) in positive integer unknowns (x, k, y, n) with $2 \leq x \leq 13, k \geq 1, y \geq 2$ and $n \geq 3$. Then equation (17) has no solutions.

5.2. Properties of polynomial $T_{k}(x)$

Lemma 22 (Bérczes, Pink, Savaș and Soydan, 2018)

$$
\begin{equation*}
T_{k}(x)=\frac{1}{k+1}\left(B_{k+1}(2 x+1)-B_{k+1}(x+1)\right) \tag{19}
\end{equation*}
$$

5.2. Properties of polynomial $T_{k}(x)$

Now we give a usefull Lemma about the polynomial $T_{k}(x)$.

Lemma 23 (Bérczes, Pink, Savaş and Soydan, 2018)

If $k=1$, then $T_{1}(x)=\frac{x(3 x+1)}{2}$, while for $k>1$ we can write
(i) $T_{k}(x)=\frac{1}{D_{k}} x(2 x+1) M_{k}, \quad$ if $k \geq 2$ is even,
(ii) $T_{k}(x)=\frac{1}{D_{k}} x^{2}(3 x+1) M_{k}$, if $k>1$ is odd
where D_{k} is a positive integer and $M_{k}(x)$ is a polynomial with integer coefficients.

Proof.

It is used the fact that Bernoulli polynomials are Appell polynomials.

5.2. Congruence properties of $S_{k}(x)$

Lemma 24 (Sondow-Tsukerman, 2014)

If p is a prime, $d, q \in \mathbb{N}, k \in \mathbb{Z}^{+}, m_{1} \in p^{d} \mathbb{N} \cup\{0\}$ and $m_{2} \in p^{d} \mathbb{N} \cup\{0\}$, then

$$
\begin{equation*}
S_{k}\left(q m_{1}+m_{2}\right) \equiv q S_{k}\left(m_{1}\right)+S_{k}\left(m_{2}\right) \quad\left(\bmod p^{d}\right) . \tag{20}
\end{equation*}
$$

5.2. Congruence properties of $S_{k}(x)$

Lemma 25 (Sondow-Tsukerman, 2014)

Let p be an odd prime and let m and k be positive integers.
(i) For some integer $d \geq 1$, we can write

$$
m=q p^{d}+r \frac{p^{d}-1}{p-1}=q p^{d}+r p^{d-1}+r p^{d-2}+\cdots+r p^{0}
$$

where $r \in\{0,1, \ldots, p-1\}$ and $0 \leq q \not \equiv r \equiv m(\bmod p)$.
(ii) In the case of $m \equiv 0(\bmod p)$, we have

$$
S_{k}(m) \equiv\left\{\begin{array}{cl}
-p^{d-1}\left(\bmod p^{d}\right), & \text { if } p-1 \mid k, \\
0 \quad\left(\bmod p^{d}\right), & \text { if } p-1 \nmid k .
\end{array}\right.
$$

5.2. Congruence properties of $S_{k}(x)$

(iii) In the case of $m \equiv-1(\bmod p)$, we have

$$
S_{k}(m) \equiv\left\{\begin{array}{cl}
-p^{d-1}(q+1)\left(\bmod p^{d}\right), & \text { if } p-1 \mid k \\
0\left(\bmod p^{d}\right), & \text { if } p-1 \nmid k
\end{array}\right.
$$

(iv) In the case of $m \equiv \frac{p-1}{2}(\bmod p)$, we have

$$
S_{k}(m) \equiv\left\{\begin{array}{cl}
-p^{d-1}\left(q+\frac{1}{2}\right)\left(\bmod p^{d}\right), & \text { if } p-1 \mid k \\
0\left(\bmod p^{d}\right), & \text { if } p-1 \nmid k
\end{array}\right.
$$

5.4. Linear forms in logarithms

- For an algebraic number α of degree d over \mathbb{Q}, we define the absolute logarithmic height of α by the following formula:

$$
\mathrm{h}(\alpha)=\frac{1}{d}\left(\log \left|a_{0}\right|+\sum_{i=1}^{d} \log \max \left\{1,\left|\alpha^{(i)}\right|\right\}\right)
$$

where a_{0} is the leading coefficient of the minimal polynomial of α over \mathbb{Z}, and $\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(d)}$ are the conjugates of α in the field of complex numbers.

5.4. Linear forms in logarithms

- For an algebraic number α of degree d over \mathbb{Q}, we define the absolute logarithmic height of α by the following formula:

$$
\mathrm{h}(\alpha)=\frac{1}{d}\left(\log \left|a_{0}\right|+\sum_{i=1}^{d} \log \max \left\{1,\left|\alpha^{(i)}\right|\right\}\right)
$$

where a_{0} is the leading coefficient of the minimal polynomial of α over \mathbb{Z}, and $\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(d)}$ are the conjugates of α in the field of complex numbers.

- Let α_{1} and α_{2} be multiplicatively independent algebraic numbers with $\left|\alpha_{1}\right| \geq 1$ and $\left|\alpha_{2}\right| \geq 1$. Consider the linear form in two logarithms:

$$
\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1}
$$

where $\log \alpha_{1}, \log \alpha_{2}$ are any determinations of the logarithms of α_{1}, α_{2} respectively, and b_{1}, b_{2} are positive integers.
We shall use the following result due to Laurent:

Lemma 26 (Laurent, 2008)

Let ρ and μ be real numbers with $\rho>1$ and $1 / 3 \leq \mu \leq 1$. Set

$$
\sigma=\frac{1+2 \mu-\mu^{2}}{2}, \quad \lambda=\sigma \log \rho .
$$

Let a_{1}, a_{2} be real numbers such that

$$
a_{i} \geq \max \left\{1, \rho\left|\log \alpha_{i}\right|-\log \left|\alpha_{i}\right|+2 \operatorname{Dh}\left(\alpha_{i}\right)\right\} \quad(i=1,2)
$$

where

$$
D=\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{Q}\right] /\left[\mathbb{R}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{R}\right]
$$

Let h be a real number such that

$$
h \geq \max \left\{D\left(\log \left(\frac{b_{1}}{a_{2}}+\frac{b_{2}}{a_{1}}\right)+\log \lambda+1.75\right)+0.06, \lambda, \frac{D \log 2}{2}\right\}
$$

We assume that

$$
a_{1} a_{2} \geq \lambda^{2}
$$

Put

$$
H=\frac{h}{\lambda}+\frac{1}{\sigma}, \quad \omega=2+2 \sqrt{1+\frac{1}{4 H^{2}}}, \quad \theta=\sqrt{1+\frac{1}{4 H^{2}}}+\frac{1}{2 H} .
$$

Then we have

$$
\log |\Lambda| \geq-C h^{\prime 2} a_{1} a_{2}-\sqrt{\omega \theta} h^{\prime}-\log \left(C^{\prime} h^{\prime 2} a_{1} a_{2}\right)
$$

with

$$
h^{\prime}=h+\frac{\lambda}{\sigma}, \quad C=C_{0} \frac{\mu}{\lambda^{3} \sigma}, \quad C^{\prime}=\sqrt{\frac{C \sigma \omega \theta}{\lambda^{3} \mu}},
$$

where

$$
C_{0}=\left(\frac{\omega}{6}+\frac{1}{2} \sqrt{\frac{\omega^{2}}{9}+\frac{8 \lambda \omega^{5 / 4} \theta^{1 / 4}}{3 \sqrt{a_{1} a_{2}} H^{1 / 2}}+\frac{4}{3}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right) \frac{\lambda \omega}{H}}\right)^{2} .
$$

5.4. A Baker type estimate

- Let $A=\{2,3,6,7,10,11\}$ and consider equation (17) with $x \in A$. The following lemma provides sharp upper bounds for the solutions n, k of the equation (17) and will be used in the proof of main theorem.

5.4. A Baker type estimate

Lemma 27 (Berczes, Pink, Savaș and Soydan, 2018)

Let $A=\{2,3,6,7,10,11\}$ and consider equation (17) with $x \in A$ in integer unknowns (k, y, n) with $k \geq 83, y \geq 2$ and $n \geq 3$ a prime. Then for $y>4 x^{2}$ we have $n \leq n_{0}$, for $y>10^{6}$ even $n \leq n_{1}$ holds, and for $y \leq 4 x^{2}$ we have $k \leq k_{1}$, where $n_{0}=n_{0}(x), n_{1}=n_{1}(x)$ and $k_{1}=k_{1}(x)$ are given in the following table.

x	$n_{0}\left(y>4 x^{2}\right)$	$n_{1}\left(y>10^{6}\right)$	$k_{1}\left(y \leq 4 x^{2}\right)$
2	7,500	3,200	45,000
3	21,000	10,000	120,000
6	94,000	53,000	540,000
7	128,000	74,200	740,000
10	253,000	157,000	$1,450,000$
11	301,000	190,000	$1,750,000$

Table: Bounding n and k under the indicated conditions

5.4. A Baker type estimate

Proof.

We distinguish three cases: $y>4 x^{2}, y>10^{6}, y \leq 4 x^{2}$. The main tool on the proof is Lemma 26 (Laurent-2008) and all computations are supported by MAGMA.

Table of contents

(1) About Bernoulli numbers and Bernoulli polynomials
(2) Bernoulli numbers/polynomials and consecutive power sums
(3) Diophantine equations with power sums

- On a Diophantine equation with power sums
- Linear forms in logarithms
(5) Formulas for $V_{2}\left(T_{k}(x)\right)$ and $V_{3}\left(T_{k}(x)\right)$
(6) The sketches for the proofs
(7) New results on the power values of the sum of three squares in arithmetic progression
(8) References

4. Formulas for $V_{2}\left(T_{k}(x)\right)$ and $V_{3}\left(T_{k}(x)\right)$

Lemma 28 (Bérczes, Pink, Savaș and Soydan, 2018)

For $q, k, t \geq 1$ and $q \equiv 1(\bmod 2)$, we have

$$
v_{2}\left(T_{k}\left(2^{t} q\right)\right)=\left\{\begin{aligned}
t-1, & \text { if } k=1 \text { or } k \text { is even } \\
2 t-2, & \text { if } k \geq 3 \text { is odd }
\end{aligned}\right.
$$

Proof.

On the proof, the method in Macmillian-Sondow 2012 (Lemma-1) is used.

5.5. Formulas for $V_{2}\left(T_{k}(x)\right)$ and $V_{3}\left(T_{k}(x)\right)$

Lemma 29 (Bérczes, Pink, Savaş and Soydan, 2018)

(i) Let x be a positive even integer. Then we have,

$$
v_{2}\left(T_{k}(x)\right)= \begin{cases}v_{2}(x)-1, & \text { if } k=1 \text { or } k \text { is even } \\ 2 v_{2}(x)-2, & \text { if } k \geq 3 \text { is odd }\end{cases}
$$

(ii) Let x be a positive odd integer. If x is odd and $k=1$, then for any solution (k, n, x, y) of (17) we get $v_{2}\left(T_{k}(x)\right)=v_{2}(3 x+1)-1$.

5.5. Formulas for $V_{2}\left(T_{k}(x)\right)$ and $V_{3}\left(T_{k}(x)\right)$

If $x \equiv 1,5(\bmod 8)$ and $x \not \equiv 1(\bmod 32)$ with $k \neq 1$, then we have $v_{2}\left(T_{k}(x)\right)$

$$
=\left\{\begin{array}{cll}
v_{2}(7 x+1)-1, & \text { if } x \equiv 1 & (\bmod 8) \text { and } k=2, \\
v_{2}((5 x+3)(3 x+1))-2, & \text { if } x \equiv 1 \quad(\bmod 8) \text { and } k=3, \\
v_{2}(3 x+1), & \text { if } x \equiv 5 \quad(\bmod 8) \text { and } k \geq 3 \text { is odd, } \\
1, & \text { if } x \equiv 5 \quad(\bmod 8) \text { and } k \geq 2 \text { is even, } \\
2, & \text { if } x \equiv 9 \quad(\bmod 16) \text { and } k \geq 4 \text { is even, } \\
3, & \text { if } x \equiv 9 \quad(\bmod 16) \text { and } k \geq 5 \text { is odd } \\
& \text { or } & \\
& \text { if } x \equiv 17 \quad(\bmod 32) \text { and } k \geq 4 \text { is even, } \\
4, & \text { if } x \equiv 17 \quad(\bmod 32) \text { and } k \geq 5 \text { is odd. }
\end{array}\right.
$$

If $x \equiv 3,7(\bmod 8)$, then for any solution (k, n, x, y) of (17), we obtain $v_{2}\left(T_{k}(x)\right)=0$.

5.5. Formulas for $V_{2}\left(T_{k}(x)\right)$ and $V_{3}\left(T_{k}(x)\right)$

Proof.

The proof is based on some properties of congruences and Lemma 28.

5.5 Formulas for $V_{2}\left(T_{k}(x)\right)$ and $V_{3}\left(T_{k}(x)\right)$

Lemma 30 (Bérczes, Pink, Savaş and Soydan, 2018)

Assume that k is not even if $x \equiv 5(\bmod 9)$. Then we have

$$
v_{3}\left(T_{k}(x)\right)=\left\{\begin{array}{cl}
v_{3}(x), & \text { if } k=1, \\
v_{3}(x)-1, & \text { if } x \equiv 0 \quad(\bmod 3) \text { and } k \geq 2 \text { is even, } \\
v_{3}\left(k x^{2}\right), & \text { if } x \equiv 0 \quad(\bmod 3) \text { and } k>3 \text { is odd, } \\
v_{3}\left(x^{2}(5 x+3)\right), & \text { if } x \equiv 0 \quad(\bmod 3) \text { and } k=3, \\
0, & \text { if } x \equiv \pm 1 \quad(\bmod 3) \text { and } k \geq 3 \text { is odd, } \\
0, & \text { if } x \equiv 2,8 \quad(\bmod 9) \text { and } k \geq 2 \text { is even, } \\
v_{3}(2 x+1)-1, & \text { if } x \equiv 1 \quad(\bmod 3) \text { and } k \geq 2 \text { is even. }
\end{array}\right.
$$

Proof.

On the proof, the main tools are Lemma 10 (Hajdu-2015) and Lemmas 24-25 (Sondow-Tsukerman-2014).

Table of contents

(1) About Bernoulli numbers and Bernoulli polynomials

2 Bernoulli numbers/polynomials and consecutive power sums
(3) Diophantine equations with power sums

- On a Diophantine equation with power sums
- Linear forms in logarithms
(5) Formulas for $V_{2}\left(T_{k}(x)\right)$ and $V_{3}\left(T_{k}(x)\right)$
(6) The sketches for the proofs
(7) New results on the power values of the sum of three squares in arithmetic progression
- References

5.6 The sketches for the proofs

Now we are ready to prove to the main results.

The proof of Theorem 19.

The main tools are Lemmas 28-29-30 (Formulas for $V_{2}\left(T_{k}(x)\right)$ and $\left.V_{3}\left(T_{k}(x)\right)\right)$

The proof of Theorem 20.

The proof is based on Theorem 19.

The proof of Theorem 21.

In the case $x \in\{2,3,6,7,10,11\}$, by using Lemma 27 ; in the case $x \in\{4,5,8,9,12,13\}$, by using Theorem 20, it was proved that the eq. has no solution. All computations are supported by MAGMA.

Table of contents

(1) About Bernoulli numbers and Bernoulli polynomials

2 Bernoulli numbers/polynomials and consecutive power sums
(3) Diophantine equations with power sums

- On a Diophantine equation with power sums
- Linear forms in logarithms
(5) Formulas for $V_{2}\left(T_{k}(x)\right)$ and $V_{3}\left(T_{k}(x)\right)$
(6) The sketches for the proofs
(7) New results on the power values of the sum of three squares in arithmetic progression
(8) References

6. New results on the power values of the sum of three squares in arithmetic progression

6.1 Some earlier results and motivation

- Now, we consider the equation

$$
\begin{equation*}
(x-1)^{k}+x^{k}+(x+1)^{k}=y^{n} \quad x, y \in \mathbb{Z}, \quad n \geq 2 \tag{21}
\end{equation*}
$$

In 2014, it was solved completely by Zhang for $k=2,3,4$ (Actually, firstly, J. W. S.Cassels considered this equation in 1985, and he proved that $x=0,1,2,24$ are only integer solutions to this equation for $k=3$ and $n=2$).

6.1 Some earlier results and motivation

- In 2016, Bennett, Patel and Siksek extended Zhang's result, completely solving equation

$$
(x-1)^{k}+x^{k}+(x+1)^{k}=y^{n} \quad x, y \in \mathbb{Z}, \quad n \geq 2
$$

in the cases $k=5$ and $k=6$. The same year, Bennett, Patel and Siksek considered this equation. They gave its integral solutions using linear forms in logarithms, sieving and Frey curves where $k=3$, $2 \leq r \leq 50, x \geq 1$ and n is prime.

6.1 Some earlier results and motivation

- Now we consider a more general. Let d be fixed positive integer. In 2017-2019, Zhang, Koutsianas and Patel studied the integer solutions of the following equation

$$
\begin{equation*}
(x-d)^{k}+x^{k}+(x+d)^{k}=y^{n}, \quad x, y \in \mathbb{Z}, \quad n \geq 2 \tag{22}
\end{equation*}
$$

for the cases $k=4$ and $k=2$, respectively.

6.1 Some earlier results and motivation

- Now we consider a more general. Let d be fixed positive integer. In 2017-2019, Zhang, Koutsianas and Patel studied the integer solutions of the following equation

$$
\begin{equation*}
(x-d)^{k}+x^{k}+(x+d)^{k}=y^{n}, \quad x, y \in \mathbb{Z}, \quad n \geq 2 \tag{22}
\end{equation*}
$$

for the cases $k=4$ and $k=2$, respectively.

- Zhang gave some results on the equation (22) with $k=4$ by using modular approach. Koutsianas and Patel gave all non-trivial primitive solutions to equation (22) where $k=2, n$ is prime and $d \leq 10^{4}$.

6.1 Some earlier results and motivation

- Now we consider a more general. Let d be fixed positive integer. In 2017-2019, Zhang, Koutsianas and Patel studied the integer solutions of the following equation

$$
\begin{equation*}
(x-d)^{k}+x^{k}+(x+d)^{k}=y^{n}, \quad x, y \in \mathbb{Z}, \quad n \geq 2 \tag{22}
\end{equation*}
$$

for the cases $k=4$ and $k=2$, respectively.

- Zhang gave some results on the equation (22) with $k=4$ by using modular approach. Koutsianas and Patel gave all non-trivial primitive solutions to equation (22) where $k=2, n$ is prime and $d \leq 10^{4}$.
- Then Garcia and Patel showed that the only solutions to the equation (22) with $n \geq 5$ a prime, $k=3, \operatorname{gcd}(x, d)=1$ and $0<d \leq 10^{6}$ are the trivial ones satifying $x y=0$.

6.1 Some earlier results and motivation

- Recently, Koutsianas studied the equation (22) with $k=2$ and $n>2$ for an infinitely family of d which is an extension of the paper of Koutsianas and Patel.

6.1 Some earlier results and motivation

- Recently, Koutsianas studied the equation (22) with $k=2$ and $n>2$ for an infinitely family of d which is an extension of the paper of Koutsianas and Patel.
- He showed that if n is an odd prime, d satisfies

$$
\begin{equation*}
d=p^{r}, p \text { is an odd prime } r \in \mathbb{N} \tag{23}
\end{equation*}
$$

and $p \leq 10^{4}$, then all solutions (x, y) of the equation

$$
\begin{equation*}
(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}, \quad x, y \in \mathbb{N}, \quad \operatorname{gcd}(x, y)=1 \tag{24}
\end{equation*}
$$

are given in the following table.

6.1 Some earlier results and motivation

Table: Non-trivial primitive solutions (x, y, r, n).

p	(x, y, r, n)
2	$(21,11,1,3)$
7	$(3,5,1,3)$
79	$(63,29,1,3)$
223	$(345,77,1,3)$
439	$(987,149,1,3)$
727	$(2133,245,1,3)$
1087	$(3927,365,1,3)$
3109	$(627,29,1,5)$
3967	$(27657,1325,1,3)$
4759	$(36363,1589,1,3)$
5623	$(46725,1877,1,3)$
8647	$(89187,2885,1,3)$

6. New results on the power values of the sum of three squares in arithmetic progression

- Here we extend the recent results for the equation $(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}(*)$. We prove the following results:

Theorem 13 (Le and Soydan, 2022)

Let n be an odd prime, and let d be a prime power such that $d=p^{r}$ $(r \in \mathbb{N})$ and p is an odd prime. If (x, y) is a solution of $(*)$, then $p>3$ and

$$
\begin{equation*}
d=\left|\sum_{i=0}^{(n-1) / 2}\binom{n}{2 i+1}\left(3 X_{1}^{2}\right)^{(n-1) / 2-i}(-2)^{i}\right|, \quad X_{1} \in \mathbb{N} . \tag{25}
\end{equation*}
$$

Moreover, if (25) holds, then the solution (x, y) can be expressed as

$$
\begin{equation*}
x=X_{1}\left|\sum_{i=0}^{(n-1) / 2}\binom{n}{2 i}\left(3 X_{1}^{2}\right)^{(n-1) / 2-i}(-2)^{i}\right|, y=3 X_{1}^{2}+2 \tag{26}
\end{equation*}
$$

6. New results on the power values of the sum of three squares in arithmetic progression

Theorem 14 (Le and Soydan, 2022)

Under assumption of Theorem 13, the equation $(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}$ has at most one solution (x, y).
6. New results on the power values of the sum of three squares in arithmetic progression

Theorem 14 (Le and Soydan, 2022)

Under assumption of Theorem 13, the equation $(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}$ has at most one solution (x, y).

Theorem 15 (Le and Soydan, 2022)

Let n be an odd prime. If every odd prime divisor p of d satisfies $p \not \equiv \pm 1$ $(\bmod 2 n)$, then the equation $(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}$ has only the solution $(x, y, d, n)=(21,11,2,3)$.
6. New results on the power values of the sum of three squares in arithmetic progression

Theorem 14 (Le and Soydan, 2022)

Under assumption of Theorem 13, the equation $(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}$ has at most one solution (x, y).

Theorem 15 (Le and Soydan, 2022)

Let n be an odd prime. If every odd prime divisor p of d satisfies $p \not \equiv \pm 1$ $(\bmod 2 n)$, then the equation $(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}$ has only the solution $(x, y, d, n)=(21,11,2,3)$.

Theorem 16 (Le and Soydan, 2022)

If $n>228000$ and $d>8 \sqrt{2}$, then all solutions (x, y) of the equation $(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}$ satisfy $y^{n}<2^{3 / 2} d^{3}$.

6.2 Preliminaries for the proofs

Definition 17

For fixed integers a, b, c the homogeneous quadratic polynomial $F=F(x, y)=a x^{2}+b x y+c y^{2}$ is called a binary quadratic form, or simply a form, and is denoted by $\{a, b, c\}$. The integer $d=b^{2}-4 a c$ is called the discriminant of the form

Let D_{1}, D_{2}, k be fixed positive integers such that $\min \left\{D_{1}, D_{2}\right\}>1$, $2 \nmid k$ and $\operatorname{gcd}\left(D_{1}, D_{2}\right)=\operatorname{gcd}\left(D_{1} D_{2}, k\right)=1$, and let $h\left(-4 D_{1} D_{2}\right)$ denote the class number of positive binary quadratic primitive forms with discriminant $-4 D_{1} D_{2}$.

6.2 Preliminaries for the proofs

Lemma 18

If the equation

$$
D_{1} X^{2}+D_{2} Y^{2}=k^{Z}, X, Y, Z \in \mathbb{Z}, \operatorname{gcd}(X, Y)=1, Z>0
$$

has solutions (X, Y, Z), then its every solution (X, Y, Z) can be expressed as

$$
\begin{aligned}
& Z=Z_{1} t, t \in \mathbb{N}, 2 \nmid t \\
& X \sqrt{D_{1}}+Y \sqrt{-D_{2}}=\lambda_{1}\left(X_{1} \sqrt{D_{1}}+\lambda_{2} Y_{1} \sqrt{-D_{2}}\right)^{t}, \lambda_{1}, \lambda_{2} \in\{1,-1\}
\end{aligned}
$$

where X_{1}, Y_{1}, Z_{1} are positive integers such that

$$
D_{1} X_{1}^{2}+D_{2} Y_{1}^{2}=k^{Z_{1}}, \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1
$$

and $h\left(-4 D_{1} D_{2}\right) \equiv 0\left(\bmod 2 Z_{1}\right)$.

6.2 Preliminaries for the proofs

Proof.

This is special case of Theorems 1 and 3 of [Le, 1995] for $D<0$ and $D_{1}>1$.

6.2 Preliminaries for the proofs

Lemma 19 (Le and Soydan, 2022)

If the equation $(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}$ when n odd prime and $d=p^{r}, p>3$ a prime, has solutions (x, y), then $2 \nmid n$ and its every solution (x, y) can be expressed as

$$
\begin{gather*}
x \sqrt{3}+d \sqrt{-2}=\lambda_{1}\left(X_{1} \sqrt{3}+\lambda_{2} Y_{1} \sqrt{-2}\right)^{n}, \quad \lambda_{1}, \lambda_{2} \in\{ \pm 1\} \tag{27}\\
y=3 X_{1}^{2}+2 Y_{1}^{2}, X_{1}, Y_{1} \in \mathbb{N}, \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1 \tag{28}
\end{gather*}
$$

6.2.1 Lehmer sequences and primitive divisor theorem

- Using Lemma 18, the proof of Lemma 19 can be done.
- Let α, β be algebraic integers. If $(\alpha+\beta)^{2}$ and $\alpha \beta$ are nonzero coprime integers and α / β is not a root of unity, then (α, β) is called a Lehmer pair.

6.2.1 Lehmer sequences and primitive divisor theorem

- Using Lemma 18, the proof of Lemma 19 can be done.
- Let α, β be algebraic integers. If $(\alpha+\beta)^{2}$ and $\alpha \beta$ are nonzero coprime integers and α / β is not a root of unity, then (α, β) is called a Lehmer pair.
- Further, let $A=(\alpha+\beta)^{2}$ and $C=\alpha \beta$. Then we have

$$
\alpha=\frac{1}{2}(\sqrt{A}+\lambda \sqrt{B}), \quad \beta=\frac{1}{2}(\sqrt{A}-\lambda \sqrt{B}), \quad \lambda \in\{ \pm 1\},
$$

where $B=A-4 C$. Such (A, B) is called the parameters of Lehmer pair (α, β).

6.2.1 Lehmer sequences and primitive divisor theorem

- Using Lemma 18, the proof of Lemma 19 can be done.
- Let α, β be algebraic integers. If $(\alpha+\beta)^{2}$ and $\alpha \beta$ are nonzero coprime integers and α / β is not a root of unity, then (α, β) is called a Lehmer pair.
- Further, let $A=(\alpha+\beta)^{2}$ and $C=\alpha \beta$. Then we have

$$
\alpha=\frac{1}{2}(\sqrt{A}+\lambda \sqrt{B}), \quad \beta=\frac{1}{2}(\sqrt{A}-\lambda \sqrt{B}), \quad \lambda \in\{ \pm 1\},
$$

where $B=A-4 C$. Such (A, B) is called the parameters of Lehmer pair (α, β).

- Two Lehmer pairs $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$ are called equivalent if $\alpha_{1} / \alpha_{2}=\beta_{1} / \beta_{2} \in\{ \pm 1, \pm \sqrt{-1}\}$. Obviously, if $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$ are equivalent Lehmer pairs with parameters $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ respectively, then $\left(A_{2}, B_{2}\right)=\left(\varepsilon A_{1}, \varepsilon B_{1}\right)$, where $\varepsilon \in\{ \pm 1\}$.

6.2.1 Lehmer sequences and primitive divisor theorem

Definition 20 (Lehmer number)

For a fixed Lehmer pair (α, β), one defines the corresponding sequence of Lehmer numbers by

$$
L_{m}(\alpha, \beta)= \begin{cases}\frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}, & \text { if } 2 \nmid m \tag{29}\\ \frac{\alpha^{m}-\beta^{m}}{\alpha^{2}-\beta^{2}}, & \text { if } 2 \mid m, m \in \mathbb{N} .\end{cases}
$$

Then, Lehmer numbers $L_{m}(\alpha, \beta)(m=1,2, \ldots)$ are nonzero integers. Further, for equivalent Lehmer pairs $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$, we have $L_{m}\left(\alpha_{1}, \beta_{1}\right)= \pm L_{m}\left(\alpha_{2}, \beta_{2}\right)$ for any m.

6.2.1 Lehmer sequences and primitive divisor theorem

Theorem 21 (Primitive divisor theorem)

Let (α, β) be a Lehmer pair. A prime number q is called a primitive divisor of the Lehmer number $L_{m}(\alpha, \beta)$ if q divides L_{m} but does not divide $(\alpha-\beta)^{2} L_{1} \cdots L_{m-1}$. We say that a Lucas sequence is an m-defective Lehmer sequence if L_{m} has no primitive divisor.

6.2.1 Lehmer sequences and primitive divisor theorem

Lemma 22 (Voutier, 1995)

Let m be such that $6<m \leq 30$ and $m \neq 8,10,12$. Then up to equivalence, all parameters $(A, B)(A>0)$ of m-defective Lehmer pairs are given as follows:
(i) $m=7,(A, B)=(1,-7),(1,-19),(3,-5),(5,-7),(13,-3),(14,-22)$.
(ii) $m=9,(A, B)=(5,-3),(7,-1),(7,-5)$.
(iii) $m=13,(A, B)=(1,-7)$.
(iv) $m=14$,
$(A, B)=(3,-13),(5,-3),(7,-1),(7,-5),(19,-1),(22,-14)$.
(v) $m=15,(A, B)=(7,-1),(10,-2)$.
(vi) $m=18,(A, B)=(1,-7),(3,-5),(5,-7)$.
(vii) $m=24,(A, B)=(3,-5),(5,-3)$.
(viii) $m=26,(A, B)=(7,-1)$.
(ix) $m=30,(A, B)=(1,-7),(2,-10)$.

6.2.1 Lehmer sequences and primitive divisor theorem

Lemma 23 (Bilu, Hanrot, Voutier, 2001)

Every positive integer m with $m>30$ is totally non-defective.

6.3 Sketches for the proofs of main results

6.3.1 The proof of Theorem 13

- We now assume that (x, y) is a solution of the equation

$$
(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}
$$

Then, x, y and d satisfy the equation $3 x^{2}+2 d^{2}=y^{n}$. From here $p=3$, we get $3 \mid y$ with $d=p^{r}$, which contradicts the condition $2 \nmid x$, $2 \nmid y, 3 \nmid y, \operatorname{gcd}(x, d)=1$. So we have $p>3$.

6.3 Sketches for the proofs of main results

6.3.1 The proof of Theorem 13

- We now assume that (x, y) is a solution of the equation

$$
(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}
$$

Then, x, y and d satisfy the equation $3 x^{2}+2 d^{2}=y^{n}$. From here $p=3$, we get $3 \mid y$ with $d=p^{r}$, which contradicts the condition $2 \nmid x$, $2 \nmid y, 3 \nmid y, \operatorname{gcd}(x, d)=1$. So we have $p>3$.

- By Lemma 19, we have

$$
\begin{equation*}
x=X_{1}\left|\sum_{i=0}^{(n-1) / 2}\binom{n}{2 i}\left(3 X_{1}^{2}\right)^{(n-1) / 2-i}\left(-2 Y_{1}^{2}\right)^{i}\right| \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
d=Y_{1}\left|\sum_{i=0}^{(n-1) / 2}\binom{n}{2 i+1}\left(3 X_{1}^{2}\right)^{(n-1) / 2-i}\left(-2 Y_{1}^{2}\right)^{i}\right| \tag{31}
\end{equation*}
$$

6.3 Sketches for the proofs of main results

6.3.1 The proof of Theorem 13

- Since $d=p^{r}$, by (31), we get

$$
\begin{equation*}
Y_{1}=p^{s}, s \in \mathbb{Z}, 0 \leq s \leq r \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sum_{i=0}^{(n-1) / 2}\binom{n}{2 i+1}\left(3 X_{1}^{2}\right)^{(n-1) / 2-i}\left(-2 Y_{1}^{2}\right)^{i}\right|=p^{r-s} \tag{33}
\end{equation*}
$$

Let

$$
\begin{equation*}
\alpha=X_{1} \sqrt{3}+Y_{1} \sqrt{-2}, \beta=X_{1} \sqrt{3}-Y_{1} \sqrt{-2} \tag{34}
\end{equation*}
$$

6.3 Sketches for the proofs of main results

6.3.1 The proof of Theorem 13

- Since $d=p^{r}$, by (31), we get

$$
\begin{equation*}
Y_{1}=p^{s}, s \in \mathbb{Z}, 0 \leq s \leq r \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sum_{i=0}^{(n-1) / 2}\binom{n}{2 i+1}\left(3 X_{1}^{2}\right)^{(n-1) / 2-i}\left(-2 Y_{1}^{2}\right)^{i}\right|=p^{r-s} \tag{33}
\end{equation*}
$$

Let

$$
\begin{equation*}
\alpha=X_{1} \sqrt{3}+Y_{1} \sqrt{-2}, \beta=X_{1} \sqrt{3}-Y_{1} \sqrt{-2} \tag{34}
\end{equation*}
$$

- So, we have

$$
\begin{equation*}
\alpha+\beta=2 X_{1} \sqrt{3}, \alpha-\beta=2 Y_{1} \sqrt{-2}, \alpha \beta=y \tag{35}
\end{equation*}
$$

Hence, we see (checking necessary conditions) such that (α, β) is a Lehmer pair with the parameters

$$
\begin{equation*}
(A, B)=\left(12 X_{1}^{2},-8 Y_{1}^{2}\right) \tag{36}
\end{equation*}
$$

6.3 Sketch for the proofs of main results

6.3.1 The proof of Theorem 13

- Further, let $L_{m}(\alpha, \beta)(m=1,2, \cdots)$ be the corresponding Lehmer numbers. By the definition of Lehmer number, we have

$$
\begin{equation*}
\sum_{i=0}^{(n-1) / 2}\binom{n}{2 i+1}\left(3 X_{1}^{2}\right)^{(n-1) / 2-i}\left(-2 Y_{1}^{2}\right)^{i}=L_{n}(\alpha, \beta) . \tag{37}
\end{equation*}
$$

Therefore, we get

$$
\begin{equation*}
\left|L_{n}(\alpha, \beta)\right|=p^{r-s} . \tag{38}
\end{equation*}
$$

6.3 Sketch for the proofs of main results

6.3.1 The proof of Theorem 13

- Further, let $L_{m}(\alpha, \beta)(m=1,2, \cdots)$ be the corresponding Lehmer numbers. By the definition of Lehmer number, we have

$$
\begin{equation*}
\sum_{i=0}^{(n-1) / 2}\binom{n}{2 i+1}\left(3 X_{1}^{2}\right)^{(n-1) / 2-i}\left(-2 Y_{1}^{2}\right)^{i}=L_{n}(\alpha, \beta) \tag{37}
\end{equation*}
$$

Therefore, we get

$$
\begin{equation*}
\left|L_{n}(\alpha, \beta)\right|=p^{r-s} . \tag{38}
\end{equation*}
$$

- If $s>0$, by primitive divisor theorem, then the Lehmer number $L_{n}(\alpha, \beta)$ has no primitive divisors. Therefore, since n is an odd prime, by Lemma 22 [Voutier 1999] and Lemma 23 [Bilu, Hanrot, Voutier, 2001], we find from $(A, B)=\left(12 X_{1}^{2},-8 Y_{1}^{2}\right)$ that $n \in\{3,5\}$. When $n=3$, by (32) and (33), we have

$$
\begin{equation*}
9 X_{1}^{2}-2 p^{2 s}= \pm p^{r-s} \tag{39}
\end{equation*}
$$

6.3 Sketch for the proofs of main results

6.3.1 The proof of Theorem 13

- When $n=5$, by (32) and (33), we have

$$
\begin{equation*}
45 X_{1}^{4}-60 X_{1}^{2} p^{2 s}+4 p^{4 s}= \pm p^{r-s} \tag{40}
\end{equation*}
$$

In both cases, using elementary arguments (via congruences and Legendre symbol), we get contradictions. Then, we get $s=0$ which means that $Y_{1}=1$. Thus, the the proof of Theorem 13 is completed.

6.3 Sketch for the proofs of main results

6.3.2 The proof of Theorem 14

- Under the assumption of Theorem 13, by elementary arguments, we prove Theorem 14.

6.3 Sketch for the proofs of main results

6.3.3 The proof of Theorem 15

Lemma 24 (Lehmer, 1930)

If n is an odd prime and q is a prime divisor of the Lehmer number $L_{n}(\alpha, \beta)$, then $q \equiv \pm 1(\bmod 2 n)$.

- By Lemma 19, if (x, y) is a solution of the equation $(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}$, then by following similar steps of proof of Theorem 13, we have

$$
\begin{equation*}
d=Y_{1}\left|L_{n}(\alpha, \beta)\right| \tag{41}
\end{equation*}
$$

6.3 Sketch for the proofs of main results

6.3.3 The proof of Theorem 15

Lemma 24 (Lehmer, 1930)

If n is an odd prime and q is a prime divisor of the Lehmer number $L_{n}(\alpha, \beta)$, then $q \equiv \pm 1(\bmod 2 n)$.

- By Lemma 19 , if (x, y) is a solution of the equation $(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}$, then by following similar steps of proof of Theorem 13, we have

$$
\begin{equation*}
d=Y_{1}\left|L_{n}(\alpha, \beta)\right| \tag{41}
\end{equation*}
$$

- Since n is an odd prime and every odd prime divisor p of d satisfies $q \not \equiv \pm 1(\bmod n)$, by Lemma 24 , we get from (41) that

$$
\begin{equation*}
\left|L_{n}(\alpha, \beta)\right|=1 \tag{42}
\end{equation*}
$$

and

$$
Y_{1}=d
$$

6.3 Sketch for the proofs of main results

6.3.3 The proof of Theorem 15

- From here, we see that the Lehmer number $L_{n}(\alpha, \beta)$ has no primitive divisors. Therefore, using the same method as in the proof of Theorem 13, by Lemma 22 [Voutier, 1999] and Lemma 23 [Bilu, Hanrot, Voutier, 1999], we can deduce from $\left|L_{n}(\alpha, \beta)\right|=1$ and $Y_{1}=d$ that $n \in\{3,5\}$.

6.3 Sketch for the proofs of main results

6.3.3 The proof of Theorem 15

- From here, we see that the Lehmer number $L_{n}(\alpha, \beta)$ has no primitive divisors. Therefore, using the same method as in the proof of Theorem 13, by Lemma 22 [Voutier, 1999] and Lemma 23 [Bilu, Hanrot, Voutier, 1999], we can deduce from $\left|L_{n}(\alpha, \beta)\right|=1$ and $Y_{1}=d$ that $n \in\{3,5\}$.
- In both cases, using elementary arguments (via congruences), we get contradictions. So, the proof of theorem is completed.

6.3 Sketch for the proofs of main results

6.3.3 The proof of Theorem 16

- Now we are interested in obtaining a lower bound for n on the equation $(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}$, so we need Baker's theory.

6.3 Sketch for the proofs of main results

6.3.3 The proof of Theorem 16

- Now we are interested in obtaining a lower bound for n on the equation $(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}$, so we need Baker's theory.

Definition 25 (Absolute logarithmic height)

Let θ be any non-zero algebraic number with minimal polynomial over \mathbb{Z} is a $\prod_{j=1}^{\ell}\left(X-\theta^{(j)}\right)$ which is of degree ℓ over \mathbb{Q}. We denote by

$$
h(\theta)=\frac{1}{\ell}\left(\log |a|+\sum_{j=1}^{\ell} \log \max \left\{1,\left|\theta^{(i)}\right|\right\}\right)
$$

its absolute logarithmic height where $\left(\theta^{(j)}\right)_{1 \leq j \leq \ell}$ are conjugates of θ.

6.3 Sketch for the proofs of main results

6.3.3 The proof of Theorem 16

Lemma 26 (Appendix of Bilu, Hanrot, Voutier 2001)

Let θ be a complex algebraic number with $|\theta|=1$, and θ is not root of unity. Let b_{1}, b_{2} be positive integers, and let $\Lambda=b_{1} \log \theta-b_{2} \pi \sqrt{-1}$.
Then we have
$\log |\Lambda|>-\left(9.03 H^{2}+0.23\right)(D h(\theta)+25.84)-2 H-2 \log H-0.7 D+2.07$,
where $D=[\mathbb{Q}(\theta): \mathbb{Q}] / 2, H=D(\log B-0.96)+4.49$,
$B=\max \left\{13, b_{1}, b_{2}\right\}$.

6.3 Sketch for the proofs of main results

6.3.3 The proof of Theorem 16

- By Lemma 19, if (x, y) is a solution of the equation

$$
\begin{align*}
(x-d)^{2}+x^{2}+(x+d)^{2} & =y^{n}, \text { then } \\
d & =\frac{1}{2 \sqrt{2}}\left|\alpha^{n}-\beta^{n}\right|, \tag{44}
\end{align*}
$$

where α, β are defined as in (34). By $y=3 X_{1}^{2}+2 Y_{1}^{2}$ and the choice of α and β, we have

$$
\begin{equation*}
|\alpha|=|\beta|=\sqrt{y} . \tag{45}
\end{equation*}
$$

6.3 Sketch for the proofs of main results

6.3.3 The proof of Theorem 16

- By Lemma 19, if (x, y) is a solution of the equation $(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}$, then

$$
\begin{equation*}
d=\frac{1}{2 \sqrt{2}}\left|\alpha^{n}-\beta^{n}\right|, \tag{44}
\end{equation*}
$$

where α, β are defined as in (34). By $y=3 X_{1}^{2}+2 Y_{1}^{2}$ and the choice of α and β, we have

$$
\begin{equation*}
|\alpha|=|\beta|=\sqrt{y} . \tag{45}
\end{equation*}
$$

- Let $\theta=\alpha / \beta . \theta$ is a complex algebraic number with $|\theta|=1, \theta$ is not a root of unity and

$$
\begin{equation*}
h(\theta)=\frac{1}{2} \log y \tag{46}
\end{equation*}
$$

6.3 Sketch for the proofs of main results

6.3.3 The proof of Theorem 16

- By $d=\frac{1}{2 \sqrt{2}}\left|\alpha^{n}-\beta^{n}\right|$ and $|\alpha|=|\beta|=\sqrt{y}$, we have

$$
\begin{equation*}
d=\frac{1}{2 \sqrt{2}}\left|\beta^{n}\right|\left|\left(\frac{\alpha}{\beta}\right)^{n}-1\right|=\frac{1}{2 \sqrt{2}} y^{n / 2}\left|\theta^{n}-1\right| . \tag{47}
\end{equation*}
$$

For any complex number z, we have either $\left|e^{z}-1\right| \geq \frac{1}{2}$ or $\left|e^{z}-1\right| \geq \frac{2}{\pi}|z-t \pi \sqrt{-1}|$ for some integers t.

6.3 Sketch for the proofs of main results

6.3.3 The proof of Theorem 16

- By $d=\frac{1}{2 \sqrt{2}}\left|\alpha^{n}-\beta^{n}\right|$ and $|\alpha|=|\beta|=\sqrt{y}$, we have

$$
\begin{equation*}
d=\frac{1}{2 \sqrt{2}}\left|\beta^{n}\right|\left|\left(\frac{\alpha}{\beta}\right)^{n}-1\right|=\frac{1}{2 \sqrt{2}} y^{n / 2}\left|\theta^{n}-1\right| . \tag{47}
\end{equation*}
$$

For any complex number z, we have either $\left|e^{z}-1\right| \geq \frac{1}{2}$ or $\left|e^{z}-1\right| \geq \frac{2}{\pi}|z-t \pi \sqrt{-1}|$ for some integers t.

- Put $z=n \log \theta$. We get either

$$
\begin{equation*}
\left|\theta^{n}-1\right| \geq \frac{1}{2} \tag{48}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|\theta^{n}-1\right| \geq \frac{2}{\pi}|n \log \theta-t \pi \sqrt{-1}|, t \in \mathbb{N}, t \leq n \tag{49}
\end{equation*}
$$

If (48) holds, since $d>8 \sqrt{2}$, then from (47) we obtain $y^{n} \leq 32 d^{2}<2^{3 / 2} d^{3}$ and the theorem is true.

6.3 Sketch for the proofs of main results

6.3.3 The proof of Theorem 16

- Let

$$
\begin{equation*}
\Lambda=n \log \theta-t \pi \sqrt{-1} \tag{50}
\end{equation*}
$$

By some inequalities, we have

$$
\begin{equation*}
d \geq \frac{y^{n / 2}}{\pi \sqrt{2}}|\Lambda| . \tag{51}
\end{equation*}
$$

6.3 Sketch for the proofs of main results

6.3.3 The proof of Theorem 16

- Let

$$
\begin{equation*}
\Lambda=n \log \theta-t \pi \sqrt{-1} \tag{50}
\end{equation*}
$$

By some inequalities, we have

$$
\begin{equation*}
d \geq \frac{y^{n / 2}}{\pi \sqrt{2}}|\Lambda| . \tag{51}
\end{equation*}
$$

- If $y^{n} \geq 2^{3 / 2} d^{3}$, then from (51) we get

$$
\pi \geq y^{n / 6}|\Lambda|
$$

whence we obtain

$$
\begin{equation*}
\log \pi \geq \frac{n}{6} \log y+\log |\Lambda| . \tag{52}
\end{equation*}
$$

Notice that $[\mathbb{Q}(\theta): \mathbb{Q}]=2, n \geq t$ and $n>228000$.

6.3 Sketch for the proofs of main results

6.3.3 The proof of Theorem 16

- Applying Lemma 26 [Appendix of Bilu, Hanrot, Voutier 2001] to $h(\theta)=\frac{1}{2} \log y$, by $\Lambda=n \log \theta-t \pi \sqrt{-1}$, we have

$$
\log |\Lambda|>-\left(9.03 H^{2}+0.23\right)\left(\frac{1}{2} \log y+25.84\right)-2 H-2 \log H+1.37
$$

where

$$
\begin{equation*}
H=\log n+3.53 \tag{54}
\end{equation*}
$$

6.3 Sketch for the proofs of main results

6.3.3 The proof of Theorem 16

- Applying Lemma 26 [Appendix of Bilu, Hanrot, Voutier 2001] to $h(\theta)=\frac{1}{2} \log y$, by $\Lambda=n \log \theta-t \pi \sqrt{-1}$, we have

$$
\log |\Lambda|>-\left(9.03 H^{2}+0.23\right)\left(\frac{1}{2} \log y+25.84\right)-2 H-2 \log H+1.37
$$

where

$$
\begin{equation*}
H=\log n+3.53 \tag{54}
\end{equation*}
$$

- Combining the above inequality with some inequalities, we get $n<228000$, a contradiction. Thus, if $n>228000$ and $d>8 \sqrt{2}$, then $y^{n}<2^{3 / 2} d^{3}$. The theorem is proved.

Table of contents

(1) About Bernoulli numbers and Bernoulli polynomials

2 Bernoulli numbers/polynomials and consecutive power sums
(3) Diophantine equations with power sums
(9) On Diophantine equation with power sums

- Linear forms in logarithms
(5) Formulas for $V_{2}\left(T_{k}(x)\right)$ and $V_{3}\left(T_{k}(x)\right)$
(8) The sketches for the proofs
(7) New results on the power values of the sum of three squares in arithmetic progression
(8) References

7．References

嗇 D．Bartoli and G．Soydan，The Diophantine equation $(x+1)^{k}+(x+2)^{k}+\ldots+(I x)^{k}=y^{n}$ revisited，Publ．Math．Debrecen 96／1－2（2020），111－120．
© M．A．Bennett，K．Györy and A．Pintér，On the Diophantine equation $1^{k}+2^{k}+\ldots+x^{k}=y^{n}$ ，Compositio Math． 140 （2004），1417－1431．
A．Bérczes，L．Hajdu，T．Miyazaki，I．Pink，On the equation $1^{k}+2^{k}+\ldots+x^{k}=y^{n}$ ，Journal of Number Theory 163 （2016），43－60．
囯 A．Bérczes，I．Pink，G．Savaș，G．Soydan，On the Diophantine equation $(x+1)^{k}+(x+2)^{k}+\ldots+(2 x)^{k}=y^{n}$ ，Journal of Number Theory 183 （2018），326－351．
目 Y．Bilu，G．Hanrot，P．M．Voutier，Existence of primitive divisors of Lucas and Lehmer numbers（with Appendix by Mignotte），J．Reine Angew．Math． 539 （2001），75－122．
囯 B．Brindza，On S－integral solutions of the equation $y^{m}=f(x)$ ，Acta Math． Hung． 44 （1984），133－139．

围 K. Györy, R. Tijdeman and M. Voorhoeve, On the equation $1^{k}+2^{k}+\ldots+x^{k}=y^{z}$ Acta Arith. 37 (1980), 234-240.
囯 L.Hajdu, On a conjecture of Schäffer concerning the equation $1^{k}+2^{k}+\ldots+x^{k}=y^{n}$, Journal of Number Theory 155 (2015), 129-138.
M. Jacobson, Á.Pintér, G.P.Walsh, A computational approach for solving $y^{2}=1^{k}+2^{k}+\ldots+x^{k}$, Math. Comp. 72 (2003), 2099-2110.
A. Koutsianas, On the solutions of the Diophantine equation $(x-d)^{2}+x^{2}+(x+d)^{2}=y^{n}$ for d a prime power, Func. Approx. Comment. Math., accepted for publication.
: A. Koutsianas, V. Patel, Perfect powers that are sums of squares in a three term arithmetic progression, Int. J. Number Theory 14 (2018), 2729-2735.

围 N．Larson，The Bernoulli Numbers：A Brief Primer，May 10，2019， 47 pages．
量 M．－H．Le，Some exponential Diophantine equations I：The equation $D_{1} x^{2}-D_{2} y^{2}=\lambda k^{z}$ ，J．Number Theory， 55 （1995），209－221．
國 M．－H．Le and G．Soydan，On the power values of the sum of three squares in arithmetic progression，Math．Comm．， 27 （2022），137－150．

D．H．Lehmer，An extended theory of Lucas＇function，Ann．Math．， 31 （1930），419－448．
回 É．Lucas，Question 1180，Nouvelles Ann．Math 14 （1875）， 336.

國 H．Rademacher，Topics in Analytic Number Theory，Springer－Verlag，Berlin， （1973）．
葍 J．J．Schäffer，The equation $1^{p}+2^{p}+\ldots+n^{p}=m^{q}$ ，Acta Math． 95 （1956）， 155－189．
图 A．Schinzel and R．Tijdeman，On the equation $y^{m}=P(x)$ ，Acta Arith． 31 （1976），199－204．
G．Soydan，On the Diophantine equation
$(x+1)^{k}+(x+2)^{k}+\ldots+(\mid x)^{k}=y^{n}$ ，Publ．Math．Debrecen 91 （2017）， 369－382．
（i．M．Voorhoeve，K．Gyôry and R．Tijdeman，On the equation
$1^{k}+2^{k}+\ldots+x^{k}+R(x)=y^{z}$ ，Acta Math． 143 （1979），1－8；Corrigendum Acta Math． 159 （1987），151－152．
P．M．Voutier，Primitive divisors of Lucas and Lehmer sequences，Math． Comput． 64 （1995），869－888．
國 G．N．Watson，The problem of the square pyramid，Messenger of Math 48 （1918），1－22．

Thank you for your attention!

Merci pour votre attention!

