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1. About Bernoulli numbers and Bernoulli polynomials

In his posthumous book “Ars Conjectandi” published in 1713 Swiss
mathematician Jakob Bernoulli (1655-1705)

introduced the Bernoulli numbers in connection to the study of the
sums of powers of consecutive integers 1k + 2k + · · ·+ nk . After
listing the formulas for the sums of powers:
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1. About Bernoulli numbers and Bernoulli polynomials

n∑
i=1

i =
n(n + 1)

2
,

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6
,

n∑
i=1

i3 =

(
n(n + 1)

2

)2

,

· · · up to k = 10 (Bernoulli expresses the right-hand side without
factoring), he gives a general formula involving the numbers which are
known today as Bernoulli numbers.
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1. About Bernoulli numbers and Bernoulli polynomials

Bernoulli then explains how these numbers are determined inductively,
and emphasizes how his formula ((1) below) is useful for computing
the sum of powers.

He claims that he did not take “a half of a quarter of an hour” to
compute the sum of tenth powers of 1 to 1000, which he computed
correctly as 91409924241424243424241924242500.
Using modern notation, his formula is written as∑n

i=1 i
k =

∑k
j=0
(k
j

)
Bj

nk+1−j

k + 1− j
, where

(k
j

)
is the binomial coefficient

and Bj is the number determined by the recurrence formula

k∑
j=0

(
k + 1
j

)
Bj = k + 1, k = 0, 1, 2 · · · . (1)

It is this Bj that is subsequently called a Bernoulli number.
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1. About Bernoulli numbers and Bernoulli polynomials

Japanese mathematician Seki Takakazu (1642-1708), published also
posthumously, in 1712 (and thus 1 year before Bernoulli!), the formula
for the sums of powers and the inductive definition of the Bernoulli
numbers are given. His formula and definition are completely the same
as Bernoulli’s.
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1. About Bernoulli numbers and Bernoulli polynomials

Since this discovery, the Bernoulli numbers have appeared in many
important results, including the series expansions of trigonometric
and hyperbolic trigonometric functions, the Euler-Maclaurin
Summation Formula, the evaluation of the Riemann zeta
function, and Fermat’s Last Theorem.

I mention here that a very extensive bibliography on Bernoulli
numbers, compiled by Karl Dilcher, is available online:
https://www.mathstat.dal.ca/ dilcher/
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1. About Bernoulli numbers and Bernoulli polynomials

A sequence of Bernoulli numbers B0, B1, B2, . . . is given with the
recurrence relation

(q+1)Bq = −
q−1∑
k=0

(
q + 1
k

)
Bk

(2)
where B0 = 1.

The first few Bernoulli numbers Bq are given as follows:

q 0 1 2 3 4 5 6 8 10 12
Bq 1 −1

2
1
6 0 − 1

30 0 1
42

−1
30

5
66

−691
2730
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1. About Bernoulli numbers and Bernoulli polynomials

We have defined Bernoulli numbers by a recurrence formula. However,
it is also common to define Bernoulli numbers using the generating
function

t

et − 1
=
∞∑
n=0

bn
tn

n!
.

Here bn = Bn.
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1. About Bernoulli numbers and Bernoulli polynomials

The connection between Bernoulli polynomials and Bernoulli numbers
is given with the relation

Bq(x) =

q∑
k=0

(
q

k

)
Bkx

q−k .

(3)

The first few Bernoulli polynomials Bq are given as follows:

B0(x) = 1,

B1(x) = x − 1
2
,

B2(x) = x2 − x +
1
6
,

B3(x) = x3 − 3
2
x2 +

1
2
x .
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1.1 Riemann Zeta Function and Bernoulli numbers

One of the most powerful applications of the Bernoulli numbers the
evaluation of the Riemann zeta function.

Definition 1 (Riemann zeta function)

Let k be a real, |k | ≥ 1. Then the Riemann zeta function over the real
numbers, ζ(k), is defined as

ζ(k) =
∞∑
n=1

1
nk
.
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1.1 Riemann Zeta Function and Bernoulli numbers

This function is important for many reasons, but we will highlight one
result proven by Euler related to the prime numbers.

Theorem 2
For k > 1,

ζ(k) =
∏
p

(
1

1− p−k

)
over all primes p.
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1.1 Riemann Zeta Function and Bernoulli numbers

The Bernoulli numbers help us to calculate the even values of this
function.

Theorem 3
For any integer k > 1,

ζ(2k) =
∞∑
n=1

1
n2k =

|B2k |(2π)2k

2(2k)!
.

The Riemann zeta function is more famous as a complex function,
with powers k in the complex plane.
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1.1 Riemann Zeta Function and Bernoulli numbers

In 1859, Bernhard Riemann (1826-1866)

hypothesized a result related to the complex Riemann zeta function,
namely, that all of its nontrivial zeroes lie on the line x = 1/2.
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1.1 Riemann Zeta Function and Bernoulli numbers

The conjecture (Riemann hypothesis) has never been proven and
remains one of the great unsolved problems of mathematics.

Mathematicians and mathematical physicists have developed a whole
branch of mathematics contingent on the fact that the hypothesis is
true, so that anyone who manages to uncover the proof will
immediately verify thousands of results.
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1.2 Fermat’s last theorem and Bernoulli numbers

Now, we look at an application of the Bernoulli numbers to one of the
great solved problems of mathematics: the simply-stated Fermat’s
Last Theorem.

Theorem 4 (Fermat’s last theorem)

The equation xn + yn = zn has no integer solutions x , y , z for positive
integers n > 2.
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1.2 Fermat’s last theorem and Bernoulli numbers

Ernst Kummer’s result was the product of another mathematician’s
mistake. German mathematician Ernst Kummer (1810-1893)

had spent little time on Fermat’s Last Theorem, which he considered a
“curiosity of number theory rather than a major item,” until March
1847, when the French mathematician Gabriel Lamé (1795-1870)
published a “complete proof” of the theorem.
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1.2 Fermat’s last theorem and Bernoulli numbers

Lamé’s main contribution was noticing the sum xn + yn could be
decomposed into factors involving the n roots of unity:

(x + y)n = (x + y)(x + ζy)(x + ζ2y) · · · (x + ζn−2y)(x + ζn−1y).
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1.2 Fermat’s last theorem and Bernoulli numbers

This was a useful step; however, he incorrectly assumed that this
factorization was unique in Q(ζp). But Kummer himself had proven
years prior that this was not the case. Kummer felt compelled to
respond, and in the few weeks after Lamé’s publication, he had a
proof for a select group of integers n that would satisfy Fermat’s Last
Theorem. He called them the “regular primes.”
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1.2 Fermat’s last theorem and Bernoulli numbers

Definition 5
Odd prime p is a regular prime if the class number of Q(ζp) is relatively
prime to p.

Note that, by definition, a class number is the order of the ideal class
group Z(ζp). But more intuitively, the class number can be
understood as “a scalar quantity describing how ‘close’ elements of a
ring of integers are to having unique factorization”.
If the class number is 1, then the ring has unique factorization. For
positive values greater than 1, the closer to 1 the class number is the
‘closer’ to having prime factorization.
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1.2 Fermat’s last theorem and Bernoulli numbers

Kummer proved an equivalent definition, which almost by magic,
involves the Bernoulli numbers:

Definition 6
A regular prime p is an integer such that it does not divide the numerator
of B2,B4,B6, · · ·Bp−3.

Kummer proved Fermat’s Last Theorem for all regular primes.
This, of course begs the question: how many regular primes are there?
We know that the first irregular prime is 37, because

B32 = −7709321041217
510

= 37× 208360028141
510

(4)
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1.2 Fermat’s last theorem and Bernoulli numbers

Beyond that, we know that there are infinitely many irregular primes,
but it is not known if there are infinitely many regular primes.
Computational studies have shown that about %60 of primes are
regular, and German mathematician Carl Ludwig Siegel (1896-1981)
has conjectured that the exact proportion converges to e−1/2.
However, neither hypothesis has been confirmed.
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1.2 Fermat’s last theorem and Bernoulli numbers

Regardless, Kummer’s early work into Fermat’s Last Theorem paved
the way for mathematicians of the twentieth century to finish off the
problem.
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2. Bernoulli numbers/polynomials and consecutive power
sums

Now, we consider a different type Diophantine equation.
Before starting, we recall the following formulae.

The following formulae are concerning the sum of n-th powers of
consecutive integers are well-known:

1 + 2 + 3 + ...+ n =
n(n + 1)

2

12 + 22 + 32 + ...+ n2 =
n(n + 1)(2n + 1)

6

13 + 23 + 33 + ...+ n3 = (
n(n + 1)

2
)2

What is the formula for the following?

1k + 2k + 3k + ...+ nk =?
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2. Bernoulli numbers/polynomials and consecutive power
sums

Now we need to introduce a family of numbers.
In 1713, Jacob Bernoulli defined a sequence of Bernoulli numbers B0,
B1, B2, . . . is given with the recurrence relation

(q+1)Bq = −
q−1∑
k=0

(
q + 1
k

)
Bk

(5)
where B0 = 1.

The first few Bernoulli numbers Bq are given as follows:

q 0 1 2 3 4 5 6 8 10 12
Bq 1 −1

2
1
6 0 − 1

30 0 1
42

−1
30

5
66

−691
2730
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2. Bernoulli numbers/polynomials and consecutive power
sums

The connection between Bernoulli polynomials and Bernoulli numbers
is given with the relation

Bq(x) =

q∑
k=0

(
q

k

)
Bkx

q−k .

(6)

The first few Bernoulli polynomials Bq are given as follows:
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2
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2
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2. Bernoulli numbers/polynomials and consecutive power
sums

Now, by using the connection between Bernoulli polynomials and
Bernoulli numbers we can give the following relation

1k + 2k + 3k + ...+ xk =
1

k + 1
(Bk+1(x + 1)− Bk+1)

where Bk+1(x + 1) is k + 1-st Bernoulli polynomial and Bk+1 is
k + 1-st Bernoulli number.

For example

16 + 26 + 36 + ...+ x6 =
1
7

(B7(x + 1)− B7)

=
1
42

x(2x + 1)(x + 1)(3x4 + 6x3 − 3x + 1)
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2. Bernoulli numbers/polynomials and consecutive power
sums

So, for example, we can calculate the following sum

16 + 26 + 36 + ...+ 106 =
1
7

(B7(11)− B7) = 1978405
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3. Diophantine equations with power sums

Now we consider the Diophantine equation

Sk(x) = yn (7)

where n ≥ 2, k , n, x , y ∈ Z+ and

Sk(x) = 1k + 2k + · · ·+ xk . (8)
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3. Diophantine equations with power sums
3.1 Early results

The first work on this equation was done in 1875. The classical
question of Lucas was whether equation

12 + 22 + ...+ x2 = y2 (9)

has only the solutions x = y = 1 and x = 24, y = 70.

In 1918, Watson proved that equation (9) has no solution other than
(x , y) = (1, 1) and (24, 70).
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3. Diophantine equations with power sums
3.1 Early results

In 1956, Schäffer gave important results on the equation

1k + 2k + · · ·+ xk = yn.

So, this equation is called "Schäffer’s equation".
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3. Diophantine equations with power sums
3.2 Schäffer’s conjecture

Lemma 1 (Schäffer, 1956)

If k = 1, then S1(x) = x(x+1)
2 . While, if k 6= 1, we can write

Sk(x) =


x2(x + 1)2Rk(x)

Ck
, if k > 1 odd,

x(x + 1)(2x + 1)Rk(x)

Ck
, if k ≥ 2 even.

(10)

(Ck > 0,Ck ∈ Z and Rk(x) is a polynomial with integer coefficient)
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3. Diophantine equations with power sums
3.2 Schäffer’s conjecture

He proved the following:

Theorem 2 (Schäffer, 1956)

For fixed k ≥ 1 and n ≥ 2, the eq. (7) has at most finitely many solutions
in positive integers x and y , unless

(k , n) ∈ {(1, 2), (3, 2), (3, 4), (5, 2)}, (11)

where, in each case, there are infinitely many such solutions.
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3. Diophantine equations with power sums
3.2 Schäffer’s conjecture

Schäffer proved that the eq. (7) has finitely many solutions in the
each following cases.

k ∈ {1, 3, 5} n = 4
k = 3 n = 8

k ∈ {4, 6, 8, 9, 10} n = 2
k ≤ 11 n ∈ {3, 5}

k ≤ 11, k 6= 10 n ∈ {29, 41, 53, 113, 173, 281, 509, 641}

In the terminology of his work,
(x , y) = (1, 1) was called as "trivial solution", (x , y) = (24, 70) was
called as "non-trivial solution" with (k , n) = (2, 2).
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3. Diophantine equations with power sums
3.2 Schäffer’s conjecture

Schäffer gave the following conjecture:

Conjecture 1 (Schäffer,1956)

Let k ≥ 1 be fixed and let n ≥ 2 be positive integers with (k , n) not in the
above list. Then the eq. (7) has only non-trivial solution
(k, n, x , y) = (2, 2, 24, 70) tir.
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3. Diophantine equations with power sums
3.2-1 Some generalizations on Schäffer’s equation

Schäffer’s proof used an ineffective method due to Thue and Siegel so his
result is also ineffective. This means that the proof does not provide any
algorithm to find all solutions.
Applying Baker’s method, Győry, Tijdeman and Voorhoeve proved a more
general and effective result in which the exponent n is also unknown.

Theorem 3 (Győry, Tijdeman and Voorhoeve, 1980)

Let k ≥ 2 and r be fixed integers with k /∈ {3, 5} if r = 0, and let s be a
square-free odd integer. Then the equation

s(1k + 2k + ...+ xk) + r = yn

in positive integers x , y ≥ 2, n ≥ 2 has only finitely many solutions and all
these can be effectively determined.

Of particular importance is the special case when s = 1 and r = 0.
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3. Diophantine equations with power sums
3.2-1 Some generalizations on Schäffer’s equation

Corollary 4 (Győry, Tijdeman and Voorhoeve, 1980)

For given k ≥ 2 with k /∈ {3, 5}, equation (7) has only finitely many
solutions in integers x , y ≥ 1, n ≥ 2, and all these can be effectively
determined.

The following striking result is due to Voorhoeve, Győry and Tijdeman:

Theorem 5 (Voorhoeve, Győry and Tijdeman, 1979)

Let R(x) be a fixed polynomial with integer coefficients and let k ≥ 2 be a
fixed integer such that k /∈ {3, 5}. Then the equation

1k + 2k + ...+ xk + R(x) = byn

in integers x , y ≥ 2, n ≥ 2 has only finitely many solutions, and an effective
upper bound can be given for n.

G.SOYDAN On some Diop. eq. with power sums 3 May 2023, Chambery 40 / 130



3. Diophantine equations with power sums
3.2-1 Some generalizations on Schäffer’s equation

Later, various generalizations and analogues of Győry, Tijdeman and
Voorhoeve have been established by several authors (Brindza, Pintér,
Dilcher, Urbanowicz, Kano · · · ). For a survey of these results we refer to
the paper of Győry and Pintér and the references given there.
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3. Diophantine equations with power sums
3.2 Schäffer’s conjecture

In the last 50 years, the various generalizations of Schäffer’s equation
were considered, but the none of them couldn’t do any progress on the
conjecture. The first progress was recorded in 2003 with the following
result:

Theorem 6 (Jacobson, Pintér and Walsh, 2003 )

For n = 2 and even values of k with k ≤ 58, eq. (7) has only the trivial
solution except in the case k = 2, when there is the anomalous solution
(x , y) = (24, 70).
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3. Diophantine equations with power sums
3.2 Schäffer’s conjecture

Finding all solutions of the eq. (7) is a hard problem because n is not
fixed. Next year, the following nice result was given by Bennett, Györy
and Pintér:

Theorem 7 (Bennett, Győry and Pintér, 2004)

For 1 ≤ k ≤ 11 and (k, n) not in the set (11), equation (7) has only the
trivial solution, unless k = 2, in which case there is the additional solution
(n, x , y) = (2, 24, 70).
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3. Diophantine equations with power sums
3.2 Schäffer’s conjecture

4 years later, using several currently available techniques, including
Baker’s method, Frey curves and modular forms, Pintér gave the
following result about Schäffer’s conjecture:

Theorem 8 (Pintér, 2007)

For odd values of k , with 1 ≤< k < 170, the equation

Sk(x) = y2n, in positive integers x , y , n with n > 2

possesses only the trivial solution (x , y) = (1, 1).
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3. Diophantine equations with power sums
3.2 Schäffer’s conjecture

In 2015, a new progress on Schäffer’s conjecture was recorded by
Hajdu. We first recall that vp(N) stands for the exponent of the prime
p in the prime factorization of the positive integer N.

Hajdu gave the following lemmas for his main theorem:

Lemma 9 (Hajdu, 2015)

Let x be a positive integer. Then we have

v2(Sk(x)) =


υ2(x(x + 1))− 1, if k = 1 or k is even,
2υ2(x(x + 1))− 2, if k ≥ 3 is odd.
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3. Diophantine equations with power sums
3.2 Schäffer’s conjecture

Lemma 10 (Hajdu, 2015)

Let x be a positive integer. Then we have

v3(Sk(x)) =



υ3(x(x + 1)), if k = 1,
υ3(x(x + 1)(2x + 1))− 1, if k is even,
0, if x ≡ 1 (mod 3) and k ≥ 3 is odd
υ3(kx2(x + 1)2)− 1, if x ≡ 0, 2 (mod 3) and
k ≥ 3 is odd.
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3. Diophantine equations with power sums
3.2 Schäffer’s conjecture

Finally, by using the aboved Lemmas, Hajdu gave the following result
about Schäffer’s conjecture:

Theorem 11 (Hajdu, 2015)

Suppose that x ≡ 0, 3 (mod 4) and x < 25. Then the eq. (7) has only
known solutions.
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3. Diophantine equations with power sums
3.2 Schäffer’s conjecture

The next year, these results were extended by Bérczes, Hajdu, Miyazaki
and Pink.

Theorem 12 (Bérczes, Hajdu, Miyazaki and Pink, 2016 )

All solutions of equation (7) in positive integers k , n, x , y with x < 25 and
n ≥ 3 are given by

(k , n, x , y) = (k , n, 1, 1), (3, 4, 8, 6).

As a simple consequence they obtain the following immediate:

Corollary 13 (Bérczes, Hajdu, Miyazaki and Pink, 2016)

For x < 25 and n ≥ 3, Schaffer’s conjecture is true.
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3.1 Old results on a Diophantine equation with power sums

Now we consider the eq.

Tk,`(x) = yn (12)

where

Tk,`(x) = (x + 1)k + (x + 2)k + ...+ (`x)k , k, ` ∈ Z+ (13)

In 2013, Zhang and Bai worked the eq. (12) for the case k = ` = 2
and they gave the following:

Theorem 14 (Bai and Zhang, 2013)

For n > 1 all solutions of the eq. (12) are
(x , y) = (0, 0), (x , y , n) = (1,∓2, 2), (2,∓5, 2), (24,∓182, 2) or for 2 - n
the only solution is (x , y) = (−1,−1).
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3.1 Old results on a Diophantine equation with power sums

Theorem 15 (Soydan, 2017)

Let k , ` ≥ 2 fixed integers. Then all solutions of the equation
(x + 1)k + (x + 2)k + ...+ (`x)k = yn in integers x , y ≥ 1 and n ≥ 2
satisfy n < C1 where C1 is an effectively computable constant depending
only on ` and k .

Theorem 16 (Soydan, 2017)

Let k , ` ≥ 2 fixed integers such that k 6= 3. Then all solutions of the
equation (x + 1)k + (x + 2)k + ...+ (`x)k = yn in integers x , y , n with
x , y ≥ 1, n ≥ 2, and ` ≡ 0 (mod 2) satisfy max{x , y , n} < C2 where C2 is
an effectively computable constant depending only on ` and k .

By Theorem 16, it was proved that this equation has finitely many
solutions where k 6= 1, 3, ` is even, n ≥ 2 and x , y , k , n ∈ Z+ and it
has infinitely many solutions where n = 2 and k = 1, 3.
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3.1.1 Sketch for the Proofs of Theorems 15 - 16

We need some lemmas for proving Theorems 15 - 16

Lemma 7

(x + 1)k + (x + 2)k + ...+ (`x)k =
Bk+1(`x + 1)− Bk+1(x + 1)

k + 1
where

Bq(x) = xq − 1
2
qxq−1 +

1
6

(
q

2

)
xq−2 + ... =

q∑
i=0

(
q

i

)
Bix

q−i

is the q-th Bernoulli polynomial.
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3.1.1 Sketch for the Proofs of Theorems 15 - 16

Lemma 8 (Brindza, 1984)

Let H(x) ∈ Q[x ],

H(x) = a0x
N + ...+ aN = a0

n∏
i=1

(x − αi )
ri ,

with a0 6= 0 and αi 6= αj for i 6= j . Let b 6= 0 ∈ Z, 2 ≤ m ∈ Z and define
ti = m

(m,ri )
. Suppose that {t1, ...tn} is not a permutation of the n-tuples

(a) {t, 1, ..., 1}, t ≥ 1;
(b) {2, 2, 1, ..., 1} Then all solutions (x , y) ∈ Z2 of the equation

H(x) = bym

satisfy max{|x |, |y |} < C , where C is effectively computable constant
depending only on H, b and m.
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3.1.1 Sketch for the Proofs of Theorems 15 - 16

Lemma 9 (Schinzel & Tijdeman, 1976)

Let f (x) ∈ Q[x ] be a polynomial having at least 2 distinct roots. Then
there exists an effective constant N(f ) such that any solution of the
equation f (x) = yn in x , n ∈ Z, y ∈ Q satisfies n ≤ N(f ).

Lemma 10 (Schinzel-Tijdeman, 1976)

Let f (x) ∈ Q[x ] be a polynomial having at least 3 simple roots. Then the
equation f (x) = yn has at most finitely many solutions in x , n ∈ Z, y ∈ Q
satisfying n > 1. If f (x) has 2 simple roots then the equation f (x) = yn

has only finitely many solutions with n > 2. In both cases the solutions can
be explicitly determined.
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3.1.1 Sketch for the Proofs of Theorems 15 - 16

Now we need two key lemmas:

Lemma 11 (Soydan, 2017)

For k ∈ Z+ let Bk(x) be the k-th Bernoulli polynomial. Then the
polynomial

G (x) =
Bk+1(`x + 1)− Bk+1(x + 1)

k + 1

has at least two distinct zeros where G (x) = yn.
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3.1.1 Sketch for the Proofs of Theorems 15 - 16

Lemma 12 (Soydan, 2017)

For q ≥ 2 let Bq(x) be the q-th Bernoulli polynomial. Let

P(x) = Bq(`x + 1)− Bq(x + 1) (14)

where ` is even. Then
(i) P(x) has at least three zeros of odd multiplicity unless q ∈ {2, 4}.
(ii) For any odd prime p, at least two zeros of P(x) have multiplicities
relatively prime to p.
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3.1.1 Sketch for the Proofs of Theorems 15 - 16

The idea for the proof of Theorem 15:
Let x , y ≥ 1 and n ≥ 2 be an arbitrary solution of the equation

Tk,`(x) = yn (15)

where

Tk,`(x) = (x + 1)k + (x + 2)k + ...+ (`x)k , k , ` ∈ Z+.

in integers. We know from Lemma 11 that Tk,`(x) has at least two distinct
zeros. Hence it follows from the equation (15) by applying Lemma 9
(Schinzel & Tijdeman, 1976) that we get an effective bound for n.
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3.1.1 Sketch for the Proofs of Theorems 15 - 16

The idea for the proof of Theorem 16:
We know from Theorem 15 that n is bounded, i.e. n < C1 with an
effectively computable C1. So we may assume that n is fixed. Using
Lemma 8 (Brindza, 1984) and Lemma 12 (Soydan, 2017), we can prove
the rest of the part of the theorem.
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3.2 New results on a Diophantine equation with power sums

Consider Tk,`(x) = (x + 1)k + (x + 2)k + · · ·+ (`x)k . We have
Tk,`(x) = Bk+1(`x + 1)− Bk+1(x + 1), where

Bq(x) = xq − 1
2
qxq−1 +

1
6

(
q

2

)
xq−2 + · · · =

q∑
i=0

(
q

i

)
xq−iBi

is the q-th Bernoulli polynomial with q = k + 1. Therefore,

Tk,`(x) =
k+1∑
i=0

(
k + 1
i

)
(`x+1)k+1−iBi−

k+1∑
i=0

(
k + 1
i

)
(x+1)k+1−iBi =

(`k+1− 1)xk+1 +
(k + 1)

2
(`k − 1)xk +

(k + 1)k

12
(`k−1− 1)xk−1 + · · · .

Note that Tk,`(0) = 0 and the multiplicity of 0 as root of Tk,`(x) is 1
if k + 1 is odd and 2 if k + 1 is even.
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3.2 New results on a Diophantine equation with power sums

Proposition 17 (Bartoli and Soydan, 2020)

The polynomial Tk,`(x) has at least three distinct roots.

Proof.
Let 0 be a root of multiplicity r = 1, 2 of Tk,`(x) and suppose that Tk,`(x)
has only two distinct roots. Then

Tk,`(x)

`k+1 − 1
= x r (x + α)k+1−r

for some α. This means that

α(k+1−r) =
(k + 1)(`k − 1)

2(`k+1 − 1)
, α2

(
k + 1− r

2

)
=

(k + 1)k(`k−1 − 1)

12(`k+1 − 1)
.

From here, using some inequalities, we get a contradiction. So the proof is
completed.
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3.2 New results on a Diophantine equation with power sums

Theorem 18 (Bartoli and Soydan, 2020)

Let k , ` be fixed integers such that k ≥ 2, k 6= 3, ` ≥ 2. Then all solutions
of equation

(x + 1)k + (x + 2)k + ...+ (`x)k = yn (16)

in integers x , y , n with x , y ≥ 1, n ≥ 2 satisfy max{x , y , n} < C where C is
an effectively computable constant depending only on ` and k .
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3.2.1 Sketch for the Proof of Theorem 18

We distinguish the cases k + 1 odd and k + 1 even.

Case 1: We suppose that k + 1 is odd and then the multiplicity of the root
0 is r = 1. Then t0 = n

(n,1) = n.

Also, using that
k−1∑
i=0

(k
i

)
Bi = 0, the term of degree of 1 of Tk,`(x) is

(`− 1)
k∑

i=0

(
k + 1
i

)
(k + 1− i)Bi

= (k + 1)(`− 1)
k∑

i=0

(
k

i

)
Bi

= (k + 1)(`− 1)Bk 6= 0,

where Bi is i-th Bernoulli number.
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3.2.1 Sketch for the Proof of Theorem 18

(i) Suppose n - k .
Since k is even and n - k , the case n = 2 is impossible. Therefore n > 2
since k is even and then there exists at least one root distinct from 0 such
that n - ri , where ri is its multiplicity. This yields ti = n

(n,ri )
6= 1 and

therefore the bad patterns in Lemma 8 [Brindza, 1984] are avoided.
(ii) Suppose n | k .
If all the roots of the polynomial Tk,`(x) have multiplicity ri divisible by n,
then Tk,`(x)/x = (`k+1 − 1)f (x)n, where f (x) = x s +

∑s−1
i=0 αix

i , with
k = ns. Since all coefficients of Tk,`(x)/(x(`k+1 − 1)) are rational, f (x)
also must have rational coefficients. So the term α0 is rational and
αn

0 = (k + 1)(`− 1)Bk/(`k+1 − 1).
According to the von Staudt-Clausen theorem, if Bk 6= 0 then 2 divides
the denominator but 4 does not divide. In this case, if 2a is the highest
power that divides `− 1, then 2a is the highest power which also divides
`k+1 − 1. Therefore 2 divides and 4 does not divide the denominator of αn

0
which is a contradiction.
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3.2.1 Sketch for the Proof of Theorem 18

If there exists at least one root having multiplicity ri not divisible by n, then
the pattern does not correspond to (n, 1, 1, 1, 1 . . .). So this case is
completed.

Case 2: Now suppose that k + 1 is even and then the multiplicity of the
root 0 is r = 2. Then t0 = n

(n,2) ∈ {n/2, n}. Also, Bk−1 6= 0 and the term
of degree 2 in Tk,`(x) is given by

(`2 − 1)
k−1∑
i=0

(
k + 1
i

)(
k + 1− i

2

)
Bi =

(
k + 1
2

)
(`2 − 1)

k−1∑
i=0

(
k − 1
i

)
Bi

=

(
k + 1
2

)
(`2 − 1)Bk−1 6= 0.
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3.2.1 Sketch for the Proof of Theorem 18

(i) Suppose n | (k − 1).
If there exists at least one root having multiplicity ri not divisible by n, then
the pattern does not correspond to (n, 1, 1, 1, 1, . . .).
If all the roots of the polynomial Tk,`(x) have multiplicity ri divisible by n,
then Tk,`(x)/(x2(`k+1 − 1)) must be a monic polynomial which is also an
n-power, then Tk,`(x)/x2 = (`k+1 − 1)f (x)n, where f ∈ Q[x ].
By the von Staudt-Clausen theorem again, a prime p divides the
denominator of Bk−1 if and only if (p − 1) | (k − 1) and the denominator is
square-free.
Suppose that 2e || (k + 1)/2, that is 2e | (k + 1)/2 and 2e+1 - (k + 1)/2.
Then

k + 1
2
≡ 2e (mod 2e+1).

Now assume that ` is odd.
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3.2.1 Sketch for the Proof of Theorem 18

Then
`2 = 1 + 8t (mod 2e+1),

therefore

`2 − 1
`k+1 − 1

=
1

`k−1 + `k−3 + `k−5 + · · ·+ `2 + 1
=

1
z
,

where

z ≡ 1 + (1 + 8t) + (1 + 8t)2 + (1 + 8t)3 + · · ·+ (1 + 8t)(k−1)/2

≡ (1 + 8t)(k+1)/2 − 1
8t

(mod 2e+1)

≡
k+1

2 8t + k2−1
8 (8t)2 + · · ·
8t

(mod 2e+1)

≡ · · · ≡ k + 1
2

(mod 2e+1) ≡ 2e (mod 2e+1).
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3.2.1 Sketch for the Proof of Theorem 18

Thus 2e || z and then 2 is the highest power of 2 dividing the denominator
of (

k + 1
2

)
`2 − 1
`k+1 − 1

Bk−1.

This is not possible since

αn
0 =

(
k + 1
2

)
`2 − 1
`k+1 − 1

Bk−1.

Since the case when ` is even for the equation (15) has already been
considered in [Soydan, 2017], the proof of case (i) is completed.
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3.2.1 Sketch for the Proof of Theorem 18

(ii) Suppose n - (k − 1). Then n must be at least 3, since k − 1 is even.

If n = 3, then t0 = n
(n,2) = 3 and there exists at least one root distinct

from 0 such that n - ri , where ri is its multiplicity. This yields
ti = n

(n,ri )
6= 1 and therefore the bad patterns are avoided.

If n = 4, then t0 = n
(n,2) = 2. Since n - k − 1, it can be still possible that

there exists a unique root of multiplicity ri , not divisible by 4, but divisible
by 2, and all the other multiplicities are divisible by 4. So we can write
Tk,`(x)/x2 = (`k+1 − 1)f (x)2 where f ∈ Q[x ], since Tk,`(x) has, apart
from 0, one root of multiplicity 2, and all the other multiplicities are
divisible by 4.
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3.2.1 Sketch for the Proof of Theorem 18

Here we distinguish two cases. First we suppose that ` is odd. Then,
following the steps in Case 2 (i), we get that 2 is the highest power of 2
dividing the denominator of(

k + 1
2

)
`2 − 1
`k+1 − 1

Bk−1,

which contradicts with

α2
0 =

(
k + 1
2

)
`2 − 1
`k+1 − 1

Bk−1.

The case when ` is even has been considered in [Soydan, 2017]. So the
proof of the case (ii) with n = 4 is completed.
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3.2.1 Sketch for the Proof of Theorem 18

If n > 4, then t0 = n
(n,2) > 2, and there exists at least one root distinct

from 0 such that n - ri , where ri is its multiplicity. This yields
ti = n

(n,ri )
6= 1 and therefore the bad patterns are avoided. This finishes the

proof of the theorem.
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5. A computational approach to a Diophantine equation
with power sums
5.1 The main results

Now, we are interested in the integer solutions of the eq.

Tk(x) = yn (17)

where
Tk(x) = (x + 1)k + (x + 2)k + ...+ (2x)k . (18)

By Theorem 16, this eq. has finitely many solutions.
Here we first provide upper bounds for the exponent n in equation
(17) in terms of 2 and 3-valuations v2 and v3 of some functions of x
and x , k .
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5. A computational approach to a Diophantine equation
with power sums
5.1 The main results

Theorem 19 (Bérczes, Pink, Savaş and Soydan, 2018)

(i) Assume first that x ≡ 0 (mod 4). Then for any solution (k, n, x , y) of
equation (17), we get

n ≤
{

v2(x)− 1, if k = 1 or k is even,
2v2(x)− 2, if k ≥ 3 is odd.
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5.1 The main results

(ii)Assume that x ≡ 1 (mod 4) and k = 1, then for any solution
(k, n, x , y) of equation (17), we get n ≤ v2(3x + 1)− 1.
Suppose next that x ≡ 1, 5 (mod 8) and x 6≡ 1 (mod 32) with k 6= 1.
Then for any solution (k , n, x , y) of equation (17), we get

n ≤



v2(7x + 1)− 1, if x ≡ 1 (mod 8) and k=2,
v2((5x + 3)(3x + 1))− 2, if x ≡ 1 (mod 8) and k = 3,

v2(3x + 1), if x ≡ 5 (mod 8) and k ≥ 3 is odd,
1, if x ≡ 5 (mod 8) and k ≥ 2 is even,
2, if x ≡ 9 (mod 16) and k ≥ 4 is even,
3, if x ≡ 9 (mod 16) and k ≥ 5 is odd

or
if x ≡ 17 (mod 32) and k ≥ 4 is even,

4, if x ≡ 17 (mod 32) and k ≥ 5 is odd.
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5. A computational approach to a Diophantine equation
with power sums
5.1 The main results

(iii)Suppose now that x ≡ 0 (mod 3) and k is odd or x ≡ 0, 4 (mod 9)
and k ≥ 2 is even. Then for any solution (k , n, x , y) of equation (17),

n ≤



v3(x), if x ≡ 0 (mod 3) and k = 1,
v3(x)− 1, if x ≡ 0 (mod 9) and k ≥ 2 is even,
v3(kx2), if x ≡ 0 (mod 3) and k > 3 is odd,

v3(x2(5x + 3)), if x ≡ 0 (mod 3) and k = 3,
v3(2x + 1)− 1, if x ≡ 4 (mod 9) and k ≥ 2 is even.
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5. A computational approach to a Diophantine equation
with power sums
5.1 The main results

Combining effective upper bounds are concerning n and Baker’s theory
(using M. Laurent’s results) we have following results:

Theorem 20 (Bérczes, Pink, Savaş and Soydan, 2018)

Assume that x ≡ 1, 4 (mod 8) or x ≡ 4, 5 (mod 8). Then Eq. (17) has no
solution with k = 1 or k ≥ 2 is even, respectively.

Theorem 21 (Bérczes, Pink, Savaş and Soydan, 2018)

Consider equation (17) in positive integer unknowns (x , k , y , n) with
2 ≤ x ≤ 13, k ≥ 1, y ≥ 2 and n ≥ 3. Then equation (17) has no solutions.
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5.2. Properties of polynomial Tk(x)

Lemma 22 (Bérczes, Pink, Savaş and Soydan, 2018)

Tk(x) =
1

k + 1
(Bk+1(2x + 1)− Bk+1(x + 1)) (19)
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5.2. Properties of polynomial Tk(x)

Now we give a usefull Lemma about the polynomial Tk(x).

Lemma 23 (Bérczes, Pink, Savaş and Soydan, 2018)

If k = 1, then T1(x) = x(3x+1)
2 , while for k > 1 we can write

(i) Tk(x) = 1
Dk

x(2x + 1)Mk , if k ≥ 2 is even,
(ii) Tk(x) = 1

Dk
x2(3x + 1)Mk , if k > 1 is odd

where Dk is a positive integer and Mk(x) is a polynomial with integer
coefficients.

Proof.
It is used the fact that Bernoulli polynomials are Appell polynomials.
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5.2. Congruence properties of Sk(x)

Lemma 24 (Sondow-Tsukerman, 2014)

If p is a prime, d , q ∈ N, k ∈ Z+, m1 ∈ pdN ∪ {0} and m2 ∈ pdN ∪ {0},
then

Sk(qm1 + m2) ≡ qSk(m1) + Sk(m2) (mod pd). (20)
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5.2. Congruence properties of Sk(x)

Lemma 25 (Sondow-Tsukerman, 2014)

Let p be an odd prime and let m and k be positive integers.
(i) For some integer d ≥ 1, we can write

m = qpd + r
pd − 1
p − 1

= qpd + rpd−1 + rpd−2 + · · ·+ rp0,

where r ∈ {0, 1, ..., p − 1} and 0 ≤ q 6≡ r ≡ m (mod p).
(ii) In the case of m ≡ 0 (mod p), we have

Sk(m) ≡

{
−pd−1 (mod pd), if p − 1 | k ,

0 (mod pd), if p − 1 - k .
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5.2. Congruence properties of Sk(x)

(iii)In the case of m ≡ −1 (mod p), we have

Sk(m) ≡

{
−pd−1(q + 1) (mod pd), if p − 1 | k ,

0 (mod pd), if p − 1 - k .

(iv) In the case of m ≡ p−1
2 (mod p), we have

Sk(m) ≡

{
−pd−1(q + 1

2) (mod pd), if p − 1 | k ,
0 (mod pd), if p − 1 - k .

G.SOYDAN On some Diop. eq. with power sums 3 May 2023, Chambery 80 / 130



5.4. Linear forms in logarithms

For an algebraic number α of degree d over Q, we define the absolute
logarithmic height of α by the following formula:

h(α) =
1
d

(
log |a0|+

d∑
i=1

log max
{
1, |α(i)|

})
,

where a0 is the leading coefficient of the minimal polynomial of α over
Z, and α(1), α(2), ... , α(d) are the conjugates of α in the field of
complex numbers.

Let α1 and α2 be multiplicatively independent algebraic numbers with
|α1| ≥ 1 and |α2| ≥ 1. Consider the linear form in two logarithms:

Λ = b2 logα2 − b1 logα1,

where logα1, logα2 are any determinations of the logarithms of α1, α2
respectively, and b1, b2 are positive integers.
We shall use the following result due to Laurent:
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Lemma 26 (Laurent, 2008)

Let ρ and µ be real numbers with ρ > 1 and 1/3 ≤ µ ≤ 1. Set

σ =
1 + 2µ− µ2

2
, λ = σ log ρ.

Let a1, a2 be real numbers such that

ai ≥ max {1, ρ| logαi | − log |αi |+ 2Dh(αi )} (i = 1, 2),

where
D = [Q(α1, α2) : Q] / [R(α1, α2) : R] .

Let h be a real number such that

h ≥ max

{
D

(
log

(
b1

a2
+

b2

a1

)
+ log λ+ 1.75

)
+ 0.06, λ,

D log 2
2

}
.
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We assume that
a1a2 ≥ λ2.

Put

H =
h

λ
+

1
σ
, ω = 2 + 2

√
1 +

1
4H2 , θ =

√
1 +

1
4H2 +

1
2H

.

Then we have

log |Λ| ≥ −Ch′ 2a1a2 −
√
ωθh′ − log

(
C ′h′ 2a1a2

)
with

h′ = h +
λ

σ
, C = C0

µ

λ3σ
, C ′ =

√
Cσωθ

λ3µ
,

where

C0 =

(
ω

6
+

1
2

√
ω2

9
+

8λω5/4θ1/4

3
√
a1a2H1/2 +

4
3

(
1
a1

+
1
a2

)
λω

H

)2

.
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5.4. A Baker type estimate

Let A = {2, 3, 6, 7, 10, 11} and consider equation (17) with x ∈ A.
The following lemma provides sharp upper bounds for the solutions
n, k of the equation (17) and will be used in the proof of main
theorem.

G.SOYDAN On some Diop. eq. with power sums 3 May 2023, Chambery 84 / 130



5.4. A Baker type estimate

Lemma 27 (Berczes, Pink, Savaş and Soydan, 2018)

Let A = {2, 3, 6, 7, 10, 11} and consider equation (17) with x ∈ A in
integer unknowns (k , y , n) with k ≥ 83, y ≥ 2 and n ≥ 3 a prime. Then for
y > 4x2 we have n ≤ n0, for y > 106 even n ≤ n1 holds, and for y ≤ 4x2

we have k ≤ k1, where n0 = n0(x), n1 = n1(x) and k1 = k1(x) are given in
the following table.

x n0 (y > 4x2) n1 (y > 106) k1 (y ≤ 4x2)

2 7, 500 3, 200 45, 000
3 21, 000 10, 000 120, 000
6 94, 000 53, 000 540, 000
7 128, 000 74, 200 740, 000
10 253, 000 157, 000 1, 450, 000
11 301, 000 190, 000 1, 750, 000

Table: Bounding n and k under the indicated conditions
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5.4. A Baker type estimate

Proof.

We distinguish three cases: y > 4x2, y > 106, y ≤ 4x2. The main tool on
the proof is Lemma 26 (Laurent-2008) and all computations are supported
by MAGMA.
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4. Formulas for V2(Tk(x)) and V3(Tk(x))

Lemma 28 (Bérczes, Pink, Savaş and Soydan, 2018)

For q, k , t ≥ 1 and q ≡ 1 (mod 2), we have

v2(Tk(2tq)) =

{
t − 1, if k = 1 or k is even,
2t − 2, if k ≥ 3 is odd.

Proof.
On the proof, the method in Macmillian-Sondow 2012 (Lemma-1) is
used.

G.SOYDAN On some Diop. eq. with power sums 3 May 2023, Chambery 88 / 130



5.5. Formulas for V2(Tk(x)) and V3(Tk(x))

Lemma 29 (Bérczes, Pink, Savaş and Soydan, 2018)

(i) Let x be a positive even integer. Then we have,

v2(Tk(x)) =

{
v2(x)− 1, if k = 1 or k is even,
2v2(x)− 2, if k ≥ 3 is odd.

(ii) Let x be a positive odd integer. If x is odd and k = 1, then for any
solution (k , n, x , y) of (17) we get v2(Tk(x)) = v2(3x + 1)− 1 .
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5.5. Formulas for V2(Tk(x)) and V3(Tk(x))

If x ≡ 1, 5 (mod 8) and x 6≡ 1 (mod 32) with k 6= 1, then we have
v2(Tk(x))

=



v2(7x + 1)− 1, if x ≡ 1 (mod 8) and k=2,
v2((5x + 3)(3x + 1))− 2, if x ≡ 1 (mod 8) and k = 3,

v2(3x + 1), if x ≡ 5 (mod 8) and k ≥ 3 is odd,
1, if x ≡ 5 (mod 8) and k ≥ 2 is even,
2, if x ≡ 9 (mod 16) and k ≥ 4 is even,
3, if x ≡ 9 (mod 16) and k ≥ 5 is odd

or
if x ≡ 17 (mod 32) and k ≥ 4 is even,

4, if x ≡ 17 (mod 32) and k ≥ 5 is odd.

If x ≡ 3, 7 (mod 8), then for any solution (k, n, x , y) of (17), we obtain
v2(Tk(x)) = 0.
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5.5. Formulas for V2(Tk(x)) and V3(Tk(x))

Proof.
The proof is based on some properties of congruences and Lemma 28.
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5.5 Formulas for V2(Tk(x)) and V3(Tk(x))

Lemma 30 (Bérczes, Pink, Savaş and Soydan, 2018)

Assume that k is not even if x ≡ 5 (mod 9). Then we have

v3(Tk(x)) =



v3(x), if k=1,
v3(x)− 1, if x ≡ 0 (mod 3) and k ≥ 2 is even,
v3(kx2), if x ≡ 0 (mod 3) and k > 3 is odd,

v3(x2(5x + 3)), if x ≡ 0 (mod 3) and k = 3,
0, if x ≡ ±1 (mod 3) and k ≥ 3 is odd,
0, if x ≡ 2, 8 (mod 9) and k ≥ 2 is even,

v3(2x + 1)− 1, if x ≡ 1 (mod 3) and k ≥ 2 is even.

Proof.
On the proof, the main tools are Lemma 10 (Hajdu-2015) and Lemmas
24-25 (Sondow-Tsukerman-2014).
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5.6 The sketches for the proofs

Now we are ready to prove to the main results.

The proof of Theorem 19.

The main tools are Lemmas 28-29-30 (Formulas for V2(Tk(x)) and
V3(Tk(x)))

The proof of Theorem 20.
The proof is based on Theorem 19.

The proof of Theorem 21.

In the case x ∈ {2, 3, 6, 7, 10, 11}, by using Lemma 27 ; in the case
x ∈ {4, 5, 8, 9, 12, 13}, by using Theorem 20, it was proved that the eq. (7)
has no solution. All computations are supported by MAGMA.
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6. New results on the power values of the sum of three
squares in arithmetic progression
6.1 Some earlier results and motivation

Now, we consider the equation

(x − 1)k + xk + (x + 1)k = yn x , y ∈ Z, n ≥ 2. (21)

In 2014, it was solved completely by Zhang for k = 2, 3, 4 (Actually,
firstly, J. W. S.Cassels considered this equation in 1985, and he proved
that x = 0, 1, 2, 24 are only integer solutions to this equation for
k = 3 and n = 2).
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6.1 Some earlier results and motivation

In 2016, Bennett, Patel and Siksek extended Zhang’s result,
completely solving equation

(x − 1)k + xk + (x + 1)k = yn x , y ∈ Z, n ≥ 2,

in the cases k = 5 and k = 6. The same year, Bennett, Patel and
Siksek considered this equation. They gave its integral solutions using
linear forms in logarithms, sieving and Frey curves where k = 3,
2 ≤ r ≤ 50, x ≥ 1 and n is prime.
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6.1 Some earlier results and motivation

Now we consider a more general. Let d be fixed positive integer. In
2017-2019, Zhang, Koutsianas and Patel studied the integer solutions
of the following equation

(x − d)k + xk + (x + d)k = yn, x , y ∈ Z, n ≥ 2 (22)

for the cases k = 4 and k = 2, respectively.

Zhang gave some results on the equation (22) with k = 4 by using
modular approach. Koutsianas and Patel gave all non-trivial primitive
solutions to equation (22) where k = 2, n is prime and d ≤ 104.
Then Garcia and Patel showed that the only solutions to the equation
(22) with n ≥ 5 a prime, k = 3, gcd(x , d) = 1 and 0 < d ≤ 106 are
the trivial ones satifying xy = 0.
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6.1 Some earlier results and motivation

Recently, Koutsianas studied the equation (22) with k = 2 and n > 2
for an infinitely family of d which is an extension of the paper of
Koutsianas and Patel.

He showed that if n is an odd prime, d satisfies

d = pr , p is an odd prime r ∈ N, (23)

and p ≤ 104, then all solutions (x , y) of the equation

(x − d)2 + x2 + (x + d)2 = yn, x , y ∈ N, gcd(x , y) = 1 (24)

are given in the following table.
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6.1 Some earlier results and motivation

Table: Non-trivial primitive solutions (x , y , r , n).

p (x , y , r , n)

2 (21, 11, 1, 3)

7 (3, 5, 1, 3)

79 (63, 29, 1, 3)

223 (345, 77, 1, 3)

439 (987, 149, 1, 3)

727 (2133, 245, 1, 3)

1087 (3927, 365, 1, 3)

3109 (627, 29, 1, 5)

3967 (27657, 1325, 1, 3)

4759 (36363, 1589, 1, 3)

5623 (46725, 1877, 1, 3)

8647 (89187, 2885, 1, 3)
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6. New results on the power values of the sum of three
squares in arithmetic progression

Here we extend the recent results for the equation
(x − d)2 + x2 + (x + d)2 = yn (∗). We prove the following results:

Theorem 13 (Le and Soydan, 2022)

Let n be an odd prime, and let d be a prime power such that d = pr

(r ∈ N) and p is an odd prime. If (x , y) is a solution of (∗), then p > 3 and

d =

∣∣∣∣∣∣
(n−1)/2∑

i=0

(
n

2i + 1

)
(3X 2

1 )(n−1)/2−i (−2)i

∣∣∣∣∣∣ , X1 ∈ N. (25)

Moreover, if (25) holds, then the solution (x , y) can be expressed as

x = X1

∣∣∣∣∣∣
(n−1)/2∑

i=0

(
n

2i

)
(3X 2

1 )(n−1)/2−i (−2)i

∣∣∣∣∣∣ , y = 3X 2
1 + 2. (26)
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6. New results on the power values of the sum of three
squares in arithmetic progression

Theorem 14 (Le and Soydan, 2022)

Under assumption of Theorem 13, the equation
(x − d)2 + x2 + (x + d)2 = yn has at most one solution (x , y).

Theorem 15 (Le and Soydan, 2022)

Let n be an odd prime. If every odd prime divisor p of d satisfies p 6≡ ±1
(mod 2n), then the equation (x − d)2 + x2 + (x + d)2 = yn has only the
solution (x , y , d , n) = (21, 11, 2, 3).

Theorem 16 (Le and Soydan, 2022)

If n > 228000 and d > 8
√
2, then all solutions (x , y) of the equation

(x − d)2 + x2 + (x + d)2 = yn satisfy yn < 23/2d3.
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6.2 Preliminaries for the proofs

Definition 17
For fixed integers a, b, c the homogeneous quadratic polynomial
F = F (x , y) = ax2 + bxy + cy2 is called a binary quadratic form, or simply
a form, and is denoted by {a, b, c}. The integer d = b2 − 4ac is called the
discriminant of the form

Let D1,D2, k be fixed positive integers such that min{D1,D2} > 1,
2 - k and gcd(D1,D2) = gcd(D1D2, k) = 1, and let h(−4D1D2)
denote the class number of positive binary quadratic primitive forms
with discriminant −4D1D2.
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6.2 Preliminaries for the proofs

Lemma 18

If the equation

D1X
2 + D2Y

2 = kZ , X ,Y ,Z ∈ Z, gcd(X ,Y ) = 1, Z > 0

has solutions (X ,Y ,Z ), then its every solution (X ,Y ,Z ) can be expressed
as

Z = Z1t, t ∈ N, 2 - t,

X
√

D1 + Y
√
−D2 = λ1(X1

√
D1 + λ2Y1

√
−D2)t , λ1, λ2 ∈ {1,−1}.

where X1,Y1,Z1 are positive integers such that

D1X
2
1 + D2Y

2
1 = kZ1 , gcd(X1,Y1) = 1

and h(−4D1D2) ≡ 0 (mod 2Z1).
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6.2 Preliminaries for the proofs

Proof.
This is special case of Theorems 1 and 3 of [Le, 1995] for D < 0 and
D1 > 1.
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6.2 Preliminaries for the proofs

Lemma 19 (Le and Soydan, 2022)

If the equation (x − d)2 + x2 + (x + d)2 = yn when n odd prime and
d = pr , p > 3 a prime, has solutions (x , y), then 2 - n and its every
solution (x , y) can be expressed as

x
√
3 + d

√
−2 = λ1(X1

√
3 + λ2Y1

√
−2)n, λ1, λ2 ∈ {±1}, (27)

y = 3X 2
1 + 2Y 2

1 , X1,Y1 ∈ N, gcd(X1,Y1) = 1. (28)
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6.2.1 Lehmer sequences and primitive divisor theorem

Using Lemma 18, the proof of Lemma 19 can be done.
Let α, β be algebraic integers. If (α + β)2 and αβ are nonzero
coprime integers and α/β is not a root of unity, then (α, β) is called a
Lehmer pair.

Further, let A = (α + β)2 and C = αβ. Then we have

α =
1
2

(
√
A + λ

√
B), β =

1
2

(
√
A− λ

√
B), λ ∈ {±1},

where B = A− 4C . Such (A,B) is called the parameters of
Lehmer pair (α, β).
Two Lehmer pairs (α1, β1) and (α2, β2) are called equivalent if
α1/α2 = β1/β2 ∈ {±1,±

√
−1}. Obviously, if (α1, β1) and (α2, β2)

are equivalent Lehmer pairs with parameters (A1,B1) and (A2,B2)
respectively, then (A2,B2) = (εA1, εB1), where ε ∈ {±1}.

G.SOYDAN On some Diop. eq. with power sums 3 May 2023, Chambery 107 / 130



6.2.1 Lehmer sequences and primitive divisor theorem

Using Lemma 18, the proof of Lemma 19 can be done.
Let α, β be algebraic integers. If (α + β)2 and αβ are nonzero
coprime integers and α/β is not a root of unity, then (α, β) is called a
Lehmer pair.
Further, let A = (α + β)2 and C = αβ. Then we have

α =
1
2

(
√
A + λ

√
B), β =

1
2

(
√
A− λ

√
B), λ ∈ {±1},

where B = A− 4C . Such (A,B) is called the parameters of
Lehmer pair (α, β).

Two Lehmer pairs (α1, β1) and (α2, β2) are called equivalent if
α1/α2 = β1/β2 ∈ {±1,±

√
−1}. Obviously, if (α1, β1) and (α2, β2)

are equivalent Lehmer pairs with parameters (A1,B1) and (A2,B2)
respectively, then (A2,B2) = (εA1, εB1), where ε ∈ {±1}.

G.SOYDAN On some Diop. eq. with power sums 3 May 2023, Chambery 107 / 130



6.2.1 Lehmer sequences and primitive divisor theorem

Using Lemma 18, the proof of Lemma 19 can be done.
Let α, β be algebraic integers. If (α + β)2 and αβ are nonzero
coprime integers and α/β is not a root of unity, then (α, β) is called a
Lehmer pair.
Further, let A = (α + β)2 and C = αβ. Then we have

α =
1
2

(
√
A + λ

√
B), β =

1
2

(
√
A− λ

√
B), λ ∈ {±1},

where B = A− 4C . Such (A,B) is called the parameters of
Lehmer pair (α, β).
Two Lehmer pairs (α1, β1) and (α2, β2) are called equivalent if
α1/α2 = β1/β2 ∈ {±1,±

√
−1}. Obviously, if (α1, β1) and (α2, β2)

are equivalent Lehmer pairs with parameters (A1,B1) and (A2,B2)
respectively, then (A2,B2) = (εA1, εB1), where ε ∈ {±1}.

G.SOYDAN On some Diop. eq. with power sums 3 May 2023, Chambery 107 / 130



6.2.1 Lehmer sequences and primitive divisor theorem

Definition 20 (Lehmer number)

For a fixed Lehmer pair (α, β), one defines the corresponding sequence of
Lehmer numbers by

Lm(α, β) =


αm − βm

α− β
, if 2 - m,

αm − βm

α2 − β2 , if 2|m, m ∈ N.
(29)

Then, Lehmer numbers Lm(α, β) (m = 1, 2, ...) are nonzero integers.
Further, for equivalent Lehmer pairs (α1, β1) and (α2, β2), we have
Lm(α1, β1) = ±Lm(α2, β2) for any m.
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6.2.1 Lehmer sequences and primitive divisor theorem

Theorem 21 (Primitive divisor theorem)

Let (α, β) be a Lehmer pair. A prime number q is called a primitive
divisor of the Lehmer number Lm(α, β) if q divides Lm but does not divide
(α− β)2L1 · · · Lm−1. We say that a Lucas sequence is an m-defective
Lehmer sequence if Lm has no primitive divisor.
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6.2.1 Lehmer sequences and primitive divisor theorem

Lemma 22 (Voutier, 1995)

Let m be such that 6 < m ≤ 30 and m 6= 8, 10, 12. Then up to
equivalence, all parameters (A,B) (A > 0) of m-defective Lehmer pairs are
given as follows:
(i) m = 7, (A,B) = (1,−7), (1,−19), (3,−5), (5,−7), (13,−3), (14,−22).
(ii) m = 9, (A,B) = (5,−3), (7,−1), (7,−5).
(iii) m = 13, (A,B) = (1,−7).
(iv) m = 14,
(A,B) = (3,−13), (5,−3), (7,−1), (7,−5), (19,−1), (22,−14).
(v) m = 15, (A,B) = (7,−1), (10,−2).
(vi) m = 18, (A,B) = (1,−7), (3,−5), (5,−7).
(vii) m = 24, (A,B) = (3,−5), (5,−3).
(viii) m = 26, (A,B) = (7,−1).
(ix) m = 30, (A,B) = (1,−7), (2,−10).
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6.2.1 Lehmer sequences and primitive divisor theorem

Lemma 23 (Bilu, Hanrot, Voutier, 2001)

Every positive integer m with m > 30 is totally non-defective.
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6.3 Sketches for the proofs of main results
6.3.1 The proof of Theorem 13

We now assume that (x , y) is a solution of the equation

(x − d)2 + x2 + (x + d)2 = yn.

Then, x , y and d satisfy the equation 3x2 + 2d2 = yn. From here
p = 3, we get 3 | y with d = pr , which contradicts the condition 2 - x ,
2 - y , 3 - y , gcd(x , d) = 1. So we have p > 3.

By Lemma 19, we have

x = X1

∣∣∣∣∣∣
(n−1)/2∑

i=0

(
n

2i

)
(3X 2

1 )(n−1)/2−i (−2Y 2
1 )i

∣∣∣∣∣∣ (30)

and

d = Y1

∣∣∣∣∣∣
(n−1)/2∑

i=0

(
n

2i + 1

)
(3X 2

1 )(n−1)/2−i (−2Y 2
1 )i

∣∣∣∣∣∣ . (31)
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6.3 Sketches for the proofs of main results
6.3.1 The proof of Theorem 13

Since d = pr , by (31), we get

Y1 = ps , s ∈ Z, 0 ≤ s ≤ r (32)

and ∣∣∣∣∣∣
(n−1)/2∑

i=0

(
n

2i + 1

)
(3X 2

1 )(n−1)/2−i (−2Y 2
1 )i

∣∣∣∣∣∣ = pr−s . (33)

Let
α = X1

√
3 + Y1

√
−2, β = X1

√
3− Y1

√
−2. (34)

So, we have

α + β = 2X1
√
3, α− β = 2Y1

√
−2, αβ = y . (35)

Hence, we see (checking necessary conditions) such that (α, β) is a
Lehmer pair with the parameters

(A,B) = (12X 2
1 ,−8Y 2

1 ). (36)
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6.3 Sketch for the proofs of main results
6.3.1 The proof of Theorem 13

Further, let Lm(α, β) (m = 1, 2, · · · ) be the corresponding Lehmer
numbers. By the definition of Lehmer number, we have

(n−1)/2∑
i=0

(
n

2i + 1

)
(3X 2

1 )(n−1)/2−i (−2Y 2
1 )i = Ln(α, β). (37)

Therefore, we get
|Ln(α, β)| = pr−s . (38)

If s > 0, by primitive divisor theorem, then the Lehmer number
Ln(α, β) has no primitive divisors. Therefore, since n is an odd prime,
by Lemma 22 [Voutier 1999] and Lemma 23 [Bilu, Hanrot, Voutier,
2001], we find from (A,B) = (12X 2

1 ,−8Y 2
1 ) that n ∈ {3, 5}.

When n = 3, by (32) and (33), we have

9X 2
1 − 2p2s = ±pr−s . (39)
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6.3 Sketch for the proofs of main results
6.3.1 The proof of Theorem 13

When n = 5, by (32) and (33), we have

45X 4
1 − 60X 2

1 p
2s + 4p4s = ±pr−s . (40)

In both cases, using elementary arguments (via congruences and
Legendre symbol), we get contradictions. Then, we get s = 0 which
means that Y1 = 1. Thus, the the proof of Theorem 13 is completed.
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6.3 Sketch for the proofs of main results
6.3.2 The proof of Theorem 14

Under the assumption of Theorem 13, by elementary arguments, we
prove Theorem 14.
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6.3 Sketch for the proofs of main results
6.3.3 The proof of Theorem 15

Lemma 24 (Lehmer, 1930)

If n is an odd prime and q is a prime divisor of the Lehmer number
Ln(α, β), then q ≡ ±1 (mod 2n).

By Lemma 19, if (x , y) is a solution of the equation
(x − d)2 + x2 + (x + d)2 = yn, then by following similar steps of proof
of Theorem 13, we have

d = Y1|Ln(α, β)|. (41)

Since n is an odd prime and every odd prime divisor p of d satisfies
q 6≡ ±1 (mod n), by Lemma 24, we get from (41) that

|Ln(α, β)| = 1 (42)

and
Y1 = d . (43)
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6.3 Sketch for the proofs of main results
6.3.3 The proof of Theorem 15

From here, we see that the Lehmer number Ln(α, β) has no primitive
divisors. Therefore, using the same method as in the proof of Theorem
13, by Lemma 22 [Voutier, 1999] and Lemma 23 [Bilu, Hanrot,
Voutier, 1999], we can deduce from |Ln(α, β)| = 1 and Y1 = d that
n ∈ {3, 5}.

In both cases, using elementary arguments (via congruences), we get
contradictions. So, the proof of theorem is completed.
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6.3 Sketch for the proofs of main results
6.3.3 The proof of Theorem 16

Now we are interested in obtaining a lower bound for n on the
equation (x − d)2 + x2 + (x + d)2 = yn, so we need Baker’s theory.

Definition 25 (Absolute logarithmic height)

Let θ be any non-zero algebraic number with minimal polynomial over Z is
a
∏`

j=1(X − θ(j)) which is of degree ` over Q. We denote by

h(θ) =
1
`

(
log |a|+

∑̀
j=1

log max{1, |θ(i)|}
)

its absolute logarithmic height where (θ(j))1≤j≤` are conjugates of θ.
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6.3 Sketch for the proofs of main results
6.3.3 The proof of Theorem 16

Lemma 26 (Appendix of Bilu, Hanrot, Voutier 2001)

Let θ be a complex algebraic number with |θ| = 1, and θ is not root of
unity. Let b1, b2 be positive integers, and let Λ = b1 log θ − b2π

√
−1.

Then we have

log |Λ| > −(9.03H2 + 0.23)(Dh(θ) + 25.84)− 2H − 2 logH − 0.7D + 2.07,

where D = [Q(θ) : Q]/2, H = D(logB − 0.96) + 4.49,
B = max{13, b1, b2}.
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6.3 Sketch for the proofs of main results
6.3.3 The proof of Theorem 16

By Lemma 19, if (x , y) is a solution of the equation
(x − d)2 + x2 + (x + d)2 = yn, then

d =
1

2
√
2
|αn − βn|, (44)

where α, β are defined as in (34). By y = 3X 2
1 + 2Y 2

1 and the choice
of α and β, we have

|α| = |β| =
√
y . (45)

Let θ = α/β. θ is a complex algebraic number with |θ| = 1, θ is not a
root of unity and

h(θ) =
1
2

log y . (46)
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6.3 Sketch for the proofs of main results
6.3.3 The proof of Theorem 16

By d =
1

2
√
2
|αn − βn| and |α| = |β| =

√
y , we have

d =
1

2
√
2
|βn|

∣∣∣∣(αβ
)n

− 1
∣∣∣∣ =

1
2
√
2
yn/2|θn − 1|. (47)

For any complex number z , we have either |ez − 1| ≥ 1
2
or

|ez − 1| ≥ 2
π
|z − tπ

√
−1| for some integers t.

Put z = n log θ. We get either

|θn − 1| ≥ 1
2

(48)

or
|θn − 1| ≥ 2

π
|n log θ − tπ

√
−1|, t ∈ N, t ≤ n. (49)

If (48) holds, since d > 8
√
2, then from (47) we obtain

yn ≤ 32d2 < 23/2d3 and the theorem is true.
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6.3 Sketch for the proofs of main results
6.3.3 The proof of Theorem 16

Let
Λ = n log θ − tπ

√
−1. (50)

By some inequalities, we have

d ≥ yn/2

π
√
2
|Λ|. (51)

If yn ≥ 23/2d3, then from (51) we get

π ≥ yn/6|Λ|,

whence we obtain
log π ≥ n

6
log y + log |Λ|. (52)

Notice that [Q(θ) : Q] = 2, n ≥ t and n > 228000.
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6.3 Sketch for the proofs of main results
6.3.3 The proof of Theorem 16

Applying Lemma 26 [Appendix of Bilu, Hanrot, Voutier 2001] to

h(θ) =
1
2

log y , by Λ = n log θ − tπ
√
−1, we have

log |Λ| > −(9.03H2+0.23)(
1
2

log y+25.84)−2H−2 logH+1.37, (53)

where
H = log n + 3.53. (54)

Combining the above inequality with some inequalities, we get
n < 228000, a contradiction. Thus, if n > 228000 and d > 8

√
2, then

yn < 23/2d3. The theorem is proved.
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Thank you for your attention!

Merci pour votre attention!
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