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1. Who is Diophantus?

Diophantus, the "father of algebra", is the best known his book
Arithmetica, work on the solution of algebraic equations and the
theory of numbers.

Diophantus did his work in the great city of Alexandria. At this time,
Alexandria was the center of mathematical learning. The period from
250 BCE (before christian era) to 350 CE (christian era) in Alexandria
is known as the Silver Age, also the Later Alexandrian Age.
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1. Who is Diophantus?

This was a time when mathematicians were discovering many ideas
that led to our current conception of mathematics. The era is
considered silver because it came after the Golden age, a time of great
development in the field of mathematics.

This Golden Age encompasses the lifetime of Euclid. The quality of
mathematics from this period was an inspiration for the axiomatic
methods of today’s mathematics.
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1. Who is Diophantus?

While it is known that Diophantus lived in the Silver age, it is hard to
pinpoint the exact years in which he lived. While many references to
the work of Diophantus have been made, Diophantus himself made
few references to other mathematicians’ work, thus making the
process of determining the time that he lived more difficult.
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1. Who is Diophantus?

Arithmetica is a collection of 150 problems that give approximate
solutions to equations up to degree three. Arithmetica also contains
equations that deal with indeterminate equations. These equations
deal with the theory of numbers.
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1. Who is Diophantus?

The original Arithmetica is believed to have comprised 13 books, but
surviving Greek manuscripts contain only six.

The others are considered lost works. It is possible that these books
were lost in a fire that occured not long after Diophantus finished
Arithmetica.
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2. What is a Diophantine equation?

We call a Diophantine equation an equation of the form

f (x1, x2, ..., xn) = 0, (1)

where f is an n− variable function with n ≥ 2. If f is a polynomial
with integer coefficients, then (1) is an algebraic Diophantine equation.

An n-tuple (x1, x2, ..., xn) ∈ Zn satisfying (1) is called a solution to
equation (1). An equation having one or more solutions is called
solvable.
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2. What is a Diophantine equation?

Concerning a Diophantine equation three basic problems arise:

Problem 1
Is the equation solvable?

Problem 2
If it is solvable, is the number of its solutions finite or infinite?

Problem 3
If it is solvable, determine all of its solutions.

G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 9 / 103



2. What is a Diophantine equation?

Concerning a Diophantine equation three basic problems arise:

Problem 1
Is the equation solvable?

Problem 2
If it is solvable, is the number of its solutions finite or infinite?

Problem 3
If it is solvable, determine all of its solutions.

G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 9 / 103



2. What is a Diophantine equation?

Concerning a Diophantine equation three basic problems arise:

Problem 1
Is the equation solvable?

Problem 2
If it is solvable, is the number of its solutions finite or infinite?

Problem 3
If it is solvable, determine all of its solutions.

G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 9 / 103



2. What is a Diophantine equation?

Concerning a Diophantine equation three basic problems arise:

Problem 1
Is the equation solvable?

Problem 2
If it is solvable, is the number of its solutions finite or infinite?

Problem 3
If it is solvable, determine all of its solutions.

G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 9 / 103



2. What is a Diophantine equation?

Among the 23 problems posed by David Hilbert in 1900, the 10 th
Problem concerned Diophantine equations. Hilbert asked if there is an
universal method for solving all Diophantine equations. Here we
reformulate it:

Problem 4 (Hilbert’s 10 th Problem)

Given a Diophantine equation with any number of unknown quantities and
with integer coefficients. To devise a process according to which it can be
determined by a finite number of operations whether the equation is
solvable in integers.

In 1970, Y. Matiyasevich gave a negative solution to Hilbert’s 10 th
Problem. His result is the following.

Theorem 5 (Y. Matiyasevich)

There is no algorithm which, for a given arbitrary Diophantine equation,
would tell whether the equation has an integer solution or not.
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2. What is a Diophantine equation?

Remark 1 (Open Problem)

For rational solutions, the analog of Hilbert’s 10 th Problem is not yet
solved. That is, the question whether there exist an algorithm to decide if a
Diophantine equation has a rational solution or not is still open.
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2. Introduction and Motivation

A mathematical adventure that started with Pierre dé Fermat in 1637
and ended with Andrew Wiles in 1995:
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2. Introduction and Motivation

Theorem 2 (Fermat’s last theorem)

The equation xp + yp = zp has no solutions in non-zero integers x , y , z for
p ≥ 3.
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2. Introduction and Motivation

A generalization of Fermat’s last theorem:

Conjecture 1 (Beal conjecture)

The equation xp + yq = z r has no solutions in non-zero mutually coprime
integers x , y , z for p, q, r ≥ 3.

Andrew Beal is a Dallas banker who has a general interest in
mathematics.
Beal has personally funded a standing prize of $ 1 million USD for its
proof or disproof.
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2. Introduction and Motivation

For given positive integers p, q, r satisfying 1/p + 1/q + 1/r < 1, the
generalized Fermat equation

Axp + Byq = Cz r (2)

has only finitely many primitive integer solutions [Darmon & Granville,
1997].

A = B = C = 1 and (p, q, r) = (n, n, n): Fermat’s equation
A = B = C = 1 and y = 1: Catalan’s equation
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2. Introduction and Motivation

the case 1/p + 1/q + 1/r = 1

(p, q, r) ∈ {(2, 6, 3), (2, 4, 4), (3, 3, 3), (4, 4, 2), (2, 3, 6)}: Each case
corresponds to an elliptic curve of rank 0.

the case (p, q, r) = (3, 3, 3) and (A,B,C ) = (1, 1, 1)

Now we consider the equation x3 + y3 = z3. The transformation

x =
6
X

+
Y

6X
, y =

6
X
− Y

6X

yields the elliptic curve
Y 2 = X 3 − 432.

All rational solutions of the above curve are (X ,Y ) = (12, 36), (12, 36) and
O. But none of them does not give any solution to the original equation.
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2. Introduction and Motivation

the case 1/p + 1/q + 1/r > 1

(p, q, r) ∈ {(2, 2, r), (2, q, 2), (2, 3, 3), (2, 3, 4), (2, 4, 3), (2, 3, 5)}: No
solution or infinitely many solutions.

the case (A,B,C ) = (1, 1, 1) and (p, q, r) = (2, 2, 2)

This case corresponds to the equation x2 + y2 = z2, which has infinitely
many solutions.
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2. Introduction and Motivation

five small solutions

1n + 23 = 32,
25 + 72 = 34,
73 + 132 = 29,
27 + 173 = 712,
35 + 114 = 1222.
(Blair Kelly, Reese Scott and Benne de Weger all found these examples
independently.)
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2. Introduction and Motivation

five large solutions

177 + 762713 = 210639282,
14143 + 22134592 = 657,
92623 + 153122832 = 1137,
438 + 962223 = 300429072,
338 + 15490342 = 156133.
(Beukers and Zagier have found these examples.)
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2. Introduction and Motivation

Now, we go back to the case 1/p + 1/q + 1/r < 1 for the generalized
Fermat equation

Axp + Byq = Cz r .

Modern techniques coming from Galois representations and modular
forms:

1 Methods of Frey–Helle-gouarch curves and variants of Ribet’s
level-lowering theorem.

2 The modularity of elliptic curves or abelian varieties over the rationals
or totally real number fields.

Modern techniques allow to give partial (sometimes complete) results
concerning the set of solutions to generalized Fermat equation
(usually, when a radical of ABC is small).
At least when (p, q, r) is of the type (n, n, n), (n, n, 2), (n, n, 3),
(2n, 2n, 5), (2, 4, n), (2, 6, n), (2, n, 4), (2, n, 6), (3, 3, p), (2, 2n, 3),
(2, 2n, 5).
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2. Introduction and Motivation

Here, note that the notation {p, q, r} implies that all permutations of
the ordered triple {p, q, r} are taken into account.

Some known results with (A,B,C ) = (1, 1, 1)

{n, n, n} and n ≥ 4: Wiles and Taylor (Fermat’s last theorem).
{n, n, 2}: Darmon and Merel (for n prime ≥ 7), Poonen (for n = 5, 6, 9).
{n, n, 3}: Darmon and Merel (for n prime ≥ 7), Lucas (19th century) (for
n = 4) and Poonen (for n = 5).
{3, 3, n}: Kraus (for 17 ≤ n ≤ 10000), Bruin (for n = 4, 5), Chen and
Siksek (for 17 ≤ n ≤ 109), Dahmen (for n = 7, 11, 13).
{2, n, 4} and {4, n, 4}: Darmon.
{2, 4, n}: Ellenberg (for prime n ≥ 211) and Ghioca (for n = 7).
{2n, 2n, 5}: Bennett (for n ≥ 7 and n = 2), Bruin (for n = 3 and n = 5
follows from Fermat’s last theorem.)
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2. Introduction and Motivation

Some known results: continued
{2, 2n, 3}: Chen (for n prime and 7 < n < 1000 and n 6= 31), Dahmen (the
case n = 31 and n ≡ 5 (mod 6))
{2, 2n, 5}: Chen (for n > 17 prime and n ≡ 1 (mod 4).
{2, 4, 6}: Bruin.
{2, 4, 5}: Bruin, 25 + 72 = 34, 35 + 114 = 1222.
{2, 3, 9}: Bruin, 132 + 73 = 29.
{2, 3, 8}: Bruin, 18 + 23 = 32 , 438 + 962223 = 300429072 ,
338 + 15490342 = 156133.
{2, 3, 7}: Poonen, Schaefer and Stoll, 17 + 23 = 32, 27 + 173 = 712,
177 + 762713 = 210639282, 92623 + 153122832 = 1137.

Survey papers about solving the generalized Fermat equation when
ABC = 1: [Bennett, Chen, Dahmen, Yazdani-2015], [Bennett,
Mihǎilescu, Siksek- 2016].
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2. Introduction and Motivation

In this lecture, we consider the Diophantine equations

ax2 + y2n = 4z3, x , y , z ∈ Z, gcd(x , y) = 1, n ∈ N≥2, (3)

and

x2 + ay2n = 4z3, x , y , z ∈ Z, gcd(x , y) = 1, n ∈ N≥2, (4)

where the class number of Q(
√
−a) with a ∈ {7, 11, 19, 43, 67, 163} is

1.

Why do we work on these equations?
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2. Introduction and Motivation

x2 + y2n = z3 (Bennett, Bruin, Chen, Dahmen, Yazdani, 1999-2015).
It is known that this equation has no solutions for a family of n’s of
natural density one.

Our motivation:
1 To extend the above results (and methods) of Bruin, Chen and

Dahmen, by considering some Diophantine equations
Ax2 + By2n = Cz3 with (A,B,C )’s different from (1, 1, 1) (assuming
for simplicity that the class number of Q(

√
−AB) is one).

2 To extend our previous results about the Diophantine equation

ax2 + b2n = 4yk , k > 3 odd prime, x , y ∈ Z, n, k ∈ N, (x , y) = 1,

[Dąbrowski, Günhan, Soydan-JNT-2020].
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2. Introduction and Motivation

In the above work, we suppose that a ∈ {7, 11, 19, 43, 67, 163} and b
is an odd prime. In the new work, we fix k = 3, but b is arbitrary.

Why were we unable to handle the Diophantine equations
7x2 + y2n+1 = 4z3 and x2 + 7y2n+1 = 4z3?

1 In 2007, Poonen, Schaefer and Stoll find the primitive integer solutions
to x2 + y7 = z3. Their method combine the modular method together
with determination of rational points on certain genus-3 algebraic
curves. This case (and possible generalizations to Ax2 + By7 = Cz3) is
very difficult.

2 In 2020, Freitas, Naskrecki and Stoll considered a general Diophantine
equation x2 + yp = z3 (with p any prime > 7). They follow and refine
the arguments of Poonen, Schaefer and Stoll by combining new ideas
around the modular method with recent approaches to determination
of the set of rational points on certain algebraic curves.
As a result, they were able to find (under GRH) the complete set of
solutions of the Diophantine equation x2 + yp = z3 only for p = 11.
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2. The Main Results

Theorem 3 (Chałupka, Dąbrowski, Soydan-2022)

The Diophantine equations

ax2 + y2n = 4z3, x , y , z ∈ Z, gcd(x , y) = 1, n ∈ N≥2,

and
x2 + ay2n = 4z3, x , y , z ∈ Z, gcd(x , y) = 1, n ∈ N≥2,

have no solutions where the class number of Q(
√
−a) with

a ∈ {11, 19, 43, 67, 163} is 1.
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2. The Main Results

Theorem 4 (Chałupka, Dąbrowski, Soydan-2022)

Let x , y , z be coprime integers such that 7x2 + y4 = 4z3. Then there are
rational numbers s, t such that one of the following holds.

x = ±(1911s4 + 1260ts3 + 378t2s2 + 12t3s + 7t4)

(−5078115s8 − 11928168ts7 − 2556036t2s6 − 1802808t3s5

− 929922t4s4 − 38808t5s3 + 46620t6s2 + 9912t7s + 461t8),

y = ±3(21s2 − 14ts − 3t2)(2499s4 + 1764ts3 + 378t2s2 + 84t3s − 5t4),

z = 6828444s8 + 7260624ts7 + 6223392t2s6 + 1728720t3s5

+ 156408t4s4 + 49392t5s3 + 28224t6s2 + 3696t7s + 268t8,
(5)
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2. The Main Results

x = ±(343s4 − 84ts3 + 378t2s2 − 180t3s + 39t4)

(1106861s8 − 3399816ts7 + 2284380t2s6 + 271656t3s5

− 929922t4s4 + 257544t5s3 − 52164t6s2 + 34776t7s − 2115t8),

y = ±3(21s2 − 14ts − 3t2)(−245s4 − 588ts3 + 378t2s2 − 252t3s + 51t4),

z = 643468s8 − 1267728ts7 + 1382976t2s6 − 345744t3s5 + 156408t4s4

− 246960t5s3 + 127008t6s2 − 21168t7s + 2844t8.
(6)

Theorem 5 (Chałupka, Dąbrowski, Soydan-2022)

The Diophantine equation 7x2 + y2n = 4z3 has no non-trivial solutions
with n = 3, 4, 5.
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2. The Main Results

Theorem 6 (Chałupka, Dąbrowski, Soydan-2022)

The Diophantine equation 7x2 + y2n = 4z3 has no primitive solutions for
all primes 7 < p < 109 and p 6= 13.

Theorem 7 (Chałupka, Dąbrowski, Soydan-2022)

The Diophantine equation 7x2 + y2n = 4z3 has no primitive solutions for a
family of primes p satisfying:

p ≡ 3 or 55 (mod 106) or p ≡ 47, 65, 113, 139, 143 or 167 (mod 168)
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2. The Main Results

Theorem 8 (Chałupka, Dąbrowski, Soydan-?)

Let x , y , z be coprime integers such that x2 + 7y4 = 4z3. Then there are
rational numbers s, t such that one of the following holds.

x = ±(−s4 − 8ts3 + 18t2s2 + 24t3s − 9t4)

(−405t8 − 108st7 − 504s2t6 + 252s3t5 − 294s4t4 − 84s5t3

− 56s6t2 + 4s7t − 5s8),

y = ±(s2 + 3t2)(−s4 + 6ts3 + 18t2s2 − 18t3s − 9t4),

z = (162t8 − 108st7 + 252s2t6 + 252s3t5 + 84s4t4 − 84s5t3

+ 28s6t2 + 4s7t + 2s8),

(7)

G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 33 / 103



2. The Main Results

x = ±(1/32)(s4 + 21t4)(441t8 − 714s4t4 + s8)

y = (3/4)st(s4 − 21t4),

z = (1/16)(441t8 + 294s4t4 + s8),

(8)

x = ±(1/32)(3s4 + 7t4)(9s8 − 714t4s4 + 49t8)

y = (3/4)st(3s4 − 7t4),

z = (1/16)(9s8 + 294t4s4 + 49t8).

(9)
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2. The Main Results

Theorem 9 (Chałupka, Dąbrowski, Soydan-?)

Any solution to the Diophantine equation x2 + 7y6 = 4z3 in coprime
integers x , y , z is of the type

(xm, ym, zm) = (±ωm(P)/4d3
m,±ψm(P)/dm,±ϕm(P)/4d2

m)

for some positive integer m, where P = (8, 20), ϕm, ψm and ωm denote
the division polynomials associated to the elliptic curve Y 2 = X 3 − 112,
and dm := gcd(±ωm(P)/4,±ψm(P),±ϕm(P)/4).
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2. The Main Results

Theorem 10 (Chałupka, Dąbrowski, Soydan-?)

The Diophantine equation x2 + 7y8 = 4z3 has the following non-trivial
solutions (x , y , z): (±5,±1, 2), (±16690170427,±105, 4114726) and
(±165997441137915,±481, 1902746962).

G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 36 / 103



2. The Main Results

Theorem 11 (Chałupka, Dąbrowski, Soydan-?)

Assume the abc conjecture. Then for a positive proportion of primes p, all
non-trivial solutions to the Diophantine equation x2 + 7y2p = 4z3 in
coprime integers x ,y ,z are given by (x , y , z) = (±5,±1, 2).
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3. Methods & Sketches for proofs
Theorem 3

As the class number of Q(
√
−a) with a ∈ {7, 11, 19, 43, 67, 163} is 1,

we have the following factorization for the left side of the eq.
ax2 + y2n = 4z3

yn + x
√
−a

2
· y

n − x
√
−a

2
= z3.

Now we have
yn + x

√
−a

2
=

(
u + v

√
−a

2

)3

,

where u, v are odd rational integers. Note that gcd(u, v) = 1.
Replacing x with yn, we obtain a similar factorization for the left hand
side of the other equation. Equating the real and imaginer parts, we
obtain the following result.
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3. Methods & Sketches for proofs
Theorem 3

Lemma 6 (Chałupka, Dąbrowski, Soydan-2022)

(a) Suppose that (x , y , z) is a solution to ax2 + y2n = 4z3. Then

(x , yn, z) =

(
v(3u2 − av2)

4
,
u(u2 − 3av2)

4
,
u2 + av2

4

)
(10)

for some odd u, v ∈ Z with gcd(u, v) = 1.
(b) Suppose that (x , y , z) is a solution to x2 + ay2n = 4z3. Then

(x , yn, z) =

(
u(u2 − 3av2)

4
,
v(3u2 − av2)

4
,
u2 + av2

4

)
(11)

for some odd u, v ∈ Z with gcd(u, v) = 1.
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3. Methods & Sketches for proofs
Theorem 3

By Lemma 6, we have u(u2 − 3av2) = 4yn or v(3u2 − av2) = 4yn.
Now, if a ∈ {11, 19, 43, 67, 163}, then u(u2 − 3av2) is congruent to 0
modulo 8, while 4yn is congruent to 4 modulo 8, a contradiction.
Similarly in the second case. So, the proof is completed.

Hence, this lemma completes the proof of Theorem 3.
So, we only need to consider the Diophantine equations

7x2 + y2n = 4z3

and
x2 + 7y2n = 4z3.
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3. Methods & Sketches for proofs
The case n = 2 for Theorem 4

Here we consider Diophantine equation

7x2 + y4 = 4z3.

By Lemma 6 (a), we have reduced the problem to solving the equation

4y2 = u(u2 − 21v2)

with odd u, v and y . Since gcd(u, v) = 1, we have
d = (u, u2 − 21v2) | 3.

Since d | u, we get

dr(d2r2 − 21v2) = 4y2.

In this case, problem of solving the eq. 7x2 + y4 = 4z3 is reduced to
solving the following equations

dX 4 − (21/d)Y 2 = CZ 2

where d = 1 or 3, C = ±1, and X ,Y are odd, with (X ,Y ) = 1.

G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 42 / 103



3. Methods & Sketches for proofs
The case n = 2 for Theorem 4

Here we consider Diophantine equation

7x2 + y4 = 4z3.

By Lemma 6 (a), we have reduced the problem to solving the equation

4y2 = u(u2 − 21v2)

with odd u, v and y . Since gcd(u, v) = 1, we have
d = (u, u2 − 21v2) | 3.
Since d | u, we get

dr(d2r2 − 21v2) = 4y2.

In this case, problem of solving the eq. 7x2 + y4 = 4z3 is reduced to
solving the following equations

dX 4 − (21/d)Y 2 = CZ 2

where d = 1 or 3, C = ±1, and X ,Y are odd, with (X ,Y ) = 1.
G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 42 / 103



3. Methods & Sketches for proofs
The case n = 2 for Theorem 4

For example consider the case (d ,C ) = (3,−1). Hence we get the
equation

−Z 2 + 7Y 2 = 3X 4.

Put K = X 2. Then we obtain

Z 2 + 3K 2 = 7Y 2.

Set 2Z ± 3K = 7L and Z ± 2K = 7M with gcd(L,M) = 1. So, the
above equation becomes

L2 + 3M2 = Y 2.

After elementary steps, we get two 2-parameter families of solutions of
the eq. −Z 2 + 7Y 2 = 3X 4. Hence the proof is completed for the
Diophantine equation 7x2 + y4 = 4z3.
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3. Methods & Sketches for proofs
The case n = 3 for Theorem 5

Here we consider
7x2 + y6 = 4z3.

The above equation corresponds to the elliptic curve (multiplying

bothside by
42 · 73

y6 )

Y 2 = X 3 − 24 · 73.

By MordellWeilShaInformation subroutine of MAGMA, we see
that its Mordell-Weil group is trival, which means that the
Diophantine equation 7x2 + y6 = 4z3 has no solution.
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3. Methods & Sketches for proofs
The case n = 4 for Theorem 5

Here we consider the Diophantine equation

7x2 + y8 = 4z3.

Any primitive solution of the Diophantine equation 7x2 + y8 = 4z3

satisfies, of course, the equation 7x2 + (y2)4 = 4z3. Hence using
Theorem 4, we obtain formulas describing x , y2 and z .

In particular we have the following formulas for y2:

y2 = ±3(21s2 − 14ts − 3t2)(2499s4 + 1764ts3 + 378t2s2

+ 84t3s − 5t4),

y2 = ±3(21s2 − 14ts − 3t2)(−245s4 − 588ts3 + 378t2s2

− 252t3s + 51t4).

Note that t = 0 implies y = 0.
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3. Methods & Sketches for proofs
The case n = 4 for Theorem 5

Therefore, nontrivial solutions correspond to affine rational points on
one of the following genus two curves:

C1 : Y 2 = 3(21X 2 − 14X − 3)(2499X 4 + 1764X 3 + 378X 2

+ 84X − 5),

C2 : Y 2 = −3(21X 2 − 14X − 3)(2499X 4 + 1764X 3 + 378X 2

+ 84X − 5),

C3 : Y 2 = 3(21X 2 − 14X − 3)(−245X 4 − 588X 3 + 378X 2

− 252X + 51),

C4 : Y 2 = −3(21X 2 − 14X − 3)(−245X 4 − 588X 3 + 378X 2

− 252X + 51).
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3. Methods & Sketches for proofs
The case n = 4 for Theorem 5

Definition 7
Let V be a variety defined over Q. V is everywhere locally solvable (ELS)
if the set V (Qp) is nonempty for all places p ≤ ∞ of Q.

ELS is necessary for existence of Q-points, but sufficient!
We check that the curves C1, C2, C3 and C4 have no rational points.
Indeed, the MAGMA commmand
HasPointsEverywhereLocally(f , 2) gives
C1(Q2) = C2(Q2) = C3(Q2) = C4(Q2) = ∅.
Namely, the Diophantine equation

7x2 + y8 = 4z3

has no non-trivial solutions.
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3. Methods & Sketches for proofs
Theorem 6

Here we consider the Diophantine equation 7x2 + y2n = 4z3 where
n = p is a prime ≥ 7.

By Lemma 6 (a), we have reduced the problem of solving the title
equation to solving the equation 4yp = u(u2 − 21v2) with odd u, v
and y . Since gcd(u, v) = 1, we have d = gcd(u, u2 − 21v2)|3. We
have two cases: d = 1 or d = 3.
(i) d = 1. Writing u = αp, u2 − 21v2 = 4βp, we arrive at

α2p − 4βp = 21v2.

Here, apply the strategy of Bennett-Skinner (modular approach)
[Bennett, Skinner-2004] for the above equation. Then it becomes an
equation with (p, p, 2) signature as follows

X p − 4Y p = 21Z 2, p ≥ 7.
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equation with (p, p, 2) signature as follows

X p − 4Y p = 21Z 2, p ≥ 7.
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3. Methods & Sketches for proofs
3.1. Modular Approach

Elliptic curves

Let E be an elliptic curve over Q. By changing variables if necessary,
we may assume that E is defined by

E : y2 = x3 + ax + b (a, b ∈ Z)

with discriminant

∆ = −16(4a3 + 27b2) 6= 0.

If E mod p is an elliptic curve (or equivalently if prime p does not
divide ∆ = ∆E ), then we say that E has good reduction mod p (or
equivalently the elliptic curve E is then said to have good reduction at
p).

.
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3. Methods & Sketches for proofs
3.1. Modular Approach

Elliptic curves

This happens for all but finitely many primes. For each such p, we
have

ap = p + 1−#E (Fp).

By Hasse’s theorem, we know that |ap| ≤ 2
√
p.

An L function

The L-function LE (s) of an elliptic curve E/Q is a function of a
complex variable s that “encodes” the infinite sequence of integers ap.
For the “bad” primes that divide ∆(E ), one defines ap to be 0, 1, or
-1, depending on the type of singularity E has when reduced mod p.
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3. Methods & Sketches for proofs
3.1. Modular Approach

An L function

Define

LE (s) =
∏
bad p

(1− app
−s)−1

∏
good p

(1− app
−s + p1−2s)−1.

Since one can express

LE (s) =
∞∑
n=0

ann
−s ,

one can consider

fE (z) =
∞∑
n=1

ane
2πinz .

Note that fE (z + 1) = fE (z).
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3. Methods & Sketches for proofs
3.1. Modular Approach

Modular forms

A modular form (of weight 2 and level N) is a holomorphic function f
on the upper half-plane satisfying

f (
az + b

cz + d
) = (cz + d)2f (z)

for all [
a b
c d

]
∈ Γ0(N)

i.e. for a, b, c , d ∈ Z, ad − bc = 1 and c ≡ 0 (mod N).
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3. Methods & Sketches for proofs
3.1. Modular Approach

Modular forms

Fourier expansion: As f (z + 1) = f (z), we have

f (z) =
∞∑
n=0

cnq
n, q = e2πiz .
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3. Methods & Sketches for proofs
3.1. Modular Approach

The Modularity Theorem for Elliptic Curves
If E is an elliptic curve over Q, then the corresponding generating series
fE (z) is a modular form of weight 2 and level N, where N is the conductor
of the curve E .

For the primes where there is bad reduction, the cubic x3 + Ax + B
has multiple roots mod p. If it has a triple root, we say that E has
additive reduction mod p. If it has a double root mod p, it has
multiplicative reduction.
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3. Methods & Sketches for proofs
3.1. Modular Approach

conductor of elliptic curve

The conductor of N(E ) is defined by∏
bad p

pfp

where

fp =

{
fp = 1 if E has multiplicative reduction at p
fp ≥ 2 if E has additive reduction at p, and equals 2 if p 6= 2, 3.
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3. Methods & Sketches for proofs
3.1. Modular Approach

(n, n, 2) signature: Bennett-Skinner Strategy

We always assume that n ≥ 7 is prime, and a, b, c ,A,B and C are nonzero
integers with Aa, Bb and Cc pairwise coprime, A and B are nth-power free,
C squarefree satisfying

Aan + Bbn = Cc2. (12)

We further assume that we are in one of the following situations:
(i) abABC ≡ 1 (mod 2) and b ≡ −BC (mod 4).
(ii) ab ≡ 1 (mod 2) and either ord2(B) = 1 or ord2(C ) = 1.
(iii) ab ≡ 1 (mod 2), ord2(B) = 2 and C ≡ −bB/4 (mod 4).
(iv) ab ≡ 1 (mod 2), ord2(B) ∈ {3, 4, 5} and c ≡ C (mod 4).
(v) ord2(Bbn) ≥ 6 and c ≡ C (mod 4).
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3. Methods & Sketches for proofs
3.1. Modular Approach

(n, n, 2) signature: Bennett-Skinner Strategy

In cases (i) and (ii) we consider the curve

E1(a, b, c) : Y 2 = X 3 + 2cCX 2 + BCbnX .

In cases (iii) and (iv) we consider

E2(a, b, c) : Y 2 = X 3 + cCX 2 +
BCbn

4
CX , (13)

and in case (v) we consider

E3(a, b, c) : Y 2 + XY = X 3 +
cC − 1

4
X 2 +

BCbn

64
X . (14)
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3. Methods & Sketches for proofs
3.1. Modular Approach

Theorem 8

[Bennet-Skinner, 2004] Let i = 1, 2 or 3.
(I ) The minimal discriminant of Ei (a, b, c) is given by

∆(E ) = 2δiC 3B2A(ab2)n, (15)

where

δi =


6 ; if i=1,
0 ; if i=2,
−12 ; if i=3.

(II ) The conductor of the curve Ei (a, b, c) is given by

N(E ) = 2αC 2Rad(ABab), (16)

where
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3. Methods & Sketches for proofs
3.1. Modular Approach

Theorem (continued)

α =



5 ; if i=1, case (i),
6 ; if i=1, case (ii),
1 ; if i=2, case (iii)„ ord2(B) = 2 and b ≡ −BC/4 (mod 4),
2 ; if i=2, case (iii), ord2(B) = 2 and b ≡ BC/4 (mod 4),
4 ; if i=2, case (iv) and ord2(B) = 3,
2 ; if i=2, case (iv) and ord2(B) ∈ {4, 5},
−1 ; if i=3, case (v) and ord2(Bbn) = 6,
0 ; if i=3, case (v) and ord2(Bbn) ≥ 7.
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3. Methods & Sketches for proofs
3.1. Modular Approach

Theorem (continued)

(III ) Suppose that Ei (a, b, c) does not have complex multiplication (This
would follow if we assume that xy 6= ±1). Then Ei ∼p f for some newform
f of level

Nn(E ) = 2βC 2Rad(AB) (17)

where

β =


α; cases (i)-(iv)
0 ; case (v) and ord2(B) 6= 0, 6,
1 ; case (v) and ord2(B) = 0,
−1 ; case (v) and ord2(B) = 6.

(IV ) The curves Ei (a, b, c) have non-trivial 2-torsion.
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3. Methods & Sketches for proofs
3.1. Modular Approach

Theorem (continued)

(V ) Suppose E (a, b, c) = Ei (a, b, c) is a curve associated to some solution
(x , y , z) satisfying the above conditions. Suppose that F is another curve
defined over Q such that E ∼p F . Then the denominator of the j-invariant
j(F ) is not divisible by any odd prime q 6= p dividing C .
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3. Methods & Sketches for proofs
3.1. Modular Approach

Galois respresentations

Let E = Ei (a, b, c) for some 1 ≤ i ≤ 3 and some primitive solution (a, b, c)
to (12). We associate to the elliptic curve E a Galois representation

ρEn : Gal(Q̄/Q)→ GL2(Fn).

This is just the representation of Gal(Q̄/Q) on the n-torsion points E [n] of
the elliptic curve E , having fixed once and for all an identification of E [n]
with F2

n. We continue to make our assumptions that aA, bB and cC are
pairwise coprime and that C is squarefree. Withous loss of generality we
may also suppose that A and B are n-th-power free.

Proposition 12 (Bennett-Skinner,2004)

If n ≥ 7 is a prime and if ab 6= ±1, then ρEn is absolutely irreducible.
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3. Methods & Sketches for proofs
3.1. Modular Approach

Proposition 13 (Bennett-Skinner,2004)

Suppose that n ≥ 7 is a prime and E = Ei (a, b, c) is a curve associated to
a primitive solution of (12) with ab 6= ±1. Suppose further that

f =
∞∑

m=1

cmq
m(q := e2πiz)

is a newform of weight 2 and level Nn(E ) giving rise to ρEn and that Kf is a
number field containing the Fourier coefficients of f . If u is a prime,
coprime to nNn(E ), then n divides one of either

n | NormKf /Q(cu ± (u + 1)) or n | NormKf /Q(cu ± 2r)

for some integer r ≤
√
u.
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3. Methods & Sketches for proofs
3.1. Modular Approach

Proposition 14 (Bennett-Skinner,2004)

Suppose that n ≥ 7 is a prime and E = Ei (a, b, c) is the curve associated
to a primitive solution of (12). If

Nn(E ) = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60

then ab = ±1, i.e. there is no new form of weight 2 and at the above level
Nn(E ).
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3. Methods & Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

Now, we go back to the equation X p − 4Y p = 21Z 2, p ≥ 7.
By this strategy, this equation corresponds to a Frey elliptic curve
which corresponds to the newforms of weight 2 and levels
N ∈ {1764, 3528}.

To compute systems of Hecke eigenvalues (or equivalently, Fourier
coefficients) for conjugacy classes of new forms, we use LMFDB
(Cremona’s elliptic curve and modular form database) or MAGMA.
Except for the cases p = 7, 19 all procedures worked for eliminating
newforms (HOW DO WE DO IT?).
For example, we have 13 newforms of weight 2 and level 1764, say
f1, f2, · · · , f13. To eliminate f1, we use Proposition 13. We know that
c5(f1) = −3. Hence, by Proposition 13, p must divide one of 1,3,5,9.
But this is impossible, because we assumed that p ≥ 7 prime.
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3. Methods & Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

For example, Proposition 13 is not usefull. What will we do?

f3 := q − 2q5 − 2q11 · · · corresponds to isogeny classe of elliptic curve
1764.c1 (Cremona label) or 1764h1 (LMFDB label) with non-integral
j-invariant 213 · 3−5 · 7−2. But this contradicts Theorem 8-(v). Hence
we can eliminate this newform.
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3. Methods & Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

We have the following

Proposition 15 (Chałupka, Dąbrowski, Soydan-2022)

The Diophantine equation α2p − 4βp = 21v2 has no solutions in coprime
odd integers for p ≥ 11, p 6= 19.

We have an alternative plan for the case p = 19. We will see..
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3. Methods & Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

(ii) d = 3. Since v3(u2 − 21v2) = 1 we have{
u = 3p−1αp

u2 − 21v2 = 12βp,

with odd α, β satisfying gcd(α, β) = 1. This leads to the equation

32p−3α2p − 4βp = 7v2.

Similar to the former equation, the above equation is reduced to the
equation of signature (p, p, 2). Then apply the strategy of
Bennett-Skinner. So, we have the following Frey curve

E = E (a, b, c) : Y 2 = X 3 + 7cX 2 − 7bpX .

We associate this curve the Galois representation

ρE ,p : Gal(Q̄/Q)→ GL2(Fp)

is irreducible for all primes p ≥ 7.

G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 68 / 103



3. Methods & Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

(ii) d = 3. Since v3(u2 − 21v2) = 1 we have{
u = 3p−1αp

u2 − 21v2 = 12βp,

with odd α, β satisfying gcd(α, β) = 1. This leads to the equation

32p−3α2p − 4βp = 7v2.

Similar to the former equation, the above equation is reduced to the
equation of signature (p, p, 2). Then apply the strategy of
Bennett-Skinner. So, we have the following Frey curve

E = E (a, b, c) : Y 2 = X 3 + 7cX 2 − 7bpX .

We associate this curve the Galois representation

ρE ,p : Gal(Q̄/Q)→ GL2(Fp)

is irreducible for all primes p ≥ 7.

G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 68 / 103



3. Methods & Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

We see that ρE ,p arises from a cuspidal newform f of weight 2, level
N = 588 (resp. 1176), and trivial Nebentypus character. Applying
some results in [Bennett, Skinner-2004] and [Freitas, Kraus-2019]
yields the following result.

Lemma 9 (Chałupka, Dąbrowski, Soydan-2022)

Let p be a prime. Suppose that (a, b, c) is a solution in coprime odd
integers to the equation 32p−3α2p − 4βp = 7v2. Let E = E (a, b, c) be the
associated Frey type curve.

1 If p ≥ 13, then ρE ,p
∼= ρF ,p for an elliptic curve F in one of the following

isogeny classes: 588C , 588E , 1176G , 1176H.

2 If p = 11, then ρE ,p
∼= ρF ,p for an elliptic curve F in one of the following

isogeny classes: 588C , 588E , 1176A, 1176F , 1176G , 1176H.
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3. Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

Here we will assume that p ≥ 11 is a prime and apply variants of the
method introduced by Kraus. Kraus stated a very interesting criterion
[Kraus-1998] that often allows to prove that the Diophantine equation
x3 + y3 = zp (p an odd prime) has no primitive solutions for fixed p,
and verified his criterion for all primes 17 ≤ p < 104.

Such a criterion has been formulated (and refined) in other situations.

Kraus Type Criterion
Let q ≥ 11 be a prime number, and let k ≥ 1 be an integer factor of q − 1.
Let µk(Fq) denote the group of k-th roots of unity in F×q . Set

Ak,q := {ξ ∈ µk(Fq) :
1− 2233ξ

33 · 7
is a square inFq}.
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3. Methods & Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

Kraus Type Criterion
For each ξ ∈ Ak,q, we denote by δξ the least non-negative integer such that

δ2ξ mod q =
1− 2233ξ

33 · 7
.

We associate with each ξ ∈ Ak,q the following equation

Y 2 = X 3 + 7δξX 2 − 7ξX .

Its discriminant equals 243−373ξ2, so it defines an elliptic curve Eξ over Fq.
We put aq(ξ) := q + 1−#Eξ(Fq).
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3. Methods & Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

Theorem 16 (Chałupka, Dąbrowski, Soydan-2022)

Let p ≥ 13 be a prime (resp. p = 11). Suppose that for each elliptic curve

F ∈ {588C1, 1176G1} (resp. F ∈ {588C1, 1176A1, 1176G1})

there exists a positive integer k such that the following three conditions
hold

1 q := kp + 1 is a prime,

2 aq(F )2 6≡ 4 (mod p),

3 aq(F )2 6≡ aq(ξ)2 (mod p) for all ξ ∈ Ak,q.

Then the equation 32p−3x2p − 4yp = 7z2 has no solutions in coprime odd
integers.
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3. Methods & Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

Corollary 17 (Chałupka, Dąbrowski, Soydan-2022)

Let 11 ≤ p < 109 and p 6= 13, 17 be a prime. Then there are no triples
(x , y , z) of coprime odd integers satisfying 32p−3x2p − 4yp = 7z2.

The computations took about 270 hours (with two desktop
computers).
Now we consider the eq. 32p−3x2p − 4yp = 7z2 for the cases p = 13
or 17.
Following [Dahmen, 2011], we give a refined version of Kraus type
criterion (Dahmen studied on the eq. x2 + y2n = z3) and apply it
succesfully in case p = 17:
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3. Methods & Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

A refined version of Kraus type criterion
(ii) d = 3. Since v3(u2 − 21v2) = 1 we have{

u = 3p−1αp

u2 − 21v2 = 12βp.

If 3 | y , then we have

3u = (3α)p and u2 − 21v2 = 12βp

for some coprime odd integers u, v and coprime odd integers α, β such
that y = 3αβ. Let R = [ω], where ω = 1+

√
21

2 , be the ring of integers
of the number field Q(

√
21). Observe that R has class number one.

If we factor in R the both sides of the second equation, then we obtain

u +
√
21v = (3±

√
21)xp1 ε and u −

√
21v = (3∓

√
21)xp2 ε

−1,

where x1, x2 ∈ R and ε ∈ R∗.
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3. Methods & Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

Suppose that q = kp + 1 is a prime that splits in R . Let q be a prime
in R lying above q. We have R/q ' Fq. Write x̄ for the reduction of
x ∈ R modulo q and write r21 for

√̄
21. From the above equalities it

follows that for some ξ0, ξ1, ξ2 ∈ µk(Fq)

3ū = ξ0, ū + r21v̄ = (3± r21)ξ1ε̄ and ū − r21v̄ = (3∓ r21)ξ2ε̄
−1.

If we divide the second and the third equality by 3ū we obtain

1
3

+ r21
v̄

3ū
= (3± r21)ξ′1ε̄ and

1
3
− r21

v̄

3ū
= (3∓ r21)ξ′2ε̄

−1,

where ξ′1 = ξ1/ξ0 and ξ′2 = ξ2/ξ0.

G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 75 / 103



3. Methods & Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

Suppose that q = kp + 1 is a prime that splits in R . Let q be a prime
in R lying above q. We have R/q ' Fq. Write x̄ for the reduction of
x ∈ R modulo q and write r21 for

√̄
21. From the above equalities it

follows that for some ξ0, ξ1, ξ2 ∈ µk(Fq)
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3. Methods & Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

Suppose further that ε̄f ∈ µk(Fq) for a fundamental unit εf ∈ R∗.
Then also ξ′1ε̄, ξ

′
2ε̄ ∈ µk(Fq). Hence v̄

3ū is an element of Sk,q ∪ S ′k,q,
where

Sk,q =

{
δ ∈ Fq :

1
3 + r21

(
1
3

+ r21δ

)
,

1
3− r21

(
1
3
− r21δ

)
∈ µk(Fq)

}
,

S ′k,q =

{
δ ∈ Fq :

1
3− r21

(
1
3

+ r21δ

)
,

1
3 + r21

(
1
3
− r21δ

)
∈ µk(Fq)

}
.

For δ ∈ Sk,q ∪ S ′k,q we define ξδ = 1−33·7δ2
3322 , which is an element of

µk(Fq). The equation

Y 2 = X 3 + 7δX 2 − 7ξδX

defines an elliptic curve Eδ over Fq. We put
aq(δ) := q + 1−#Eδ(Fq).
Then we have the following result.
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3.Methods & Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

Theorem 18 (Chałupka, Dąbrowski, Soydan-2022)

Let p > 11 be a prime. Suppose that for each elliptic curve
F ∈ {588C1, 1176G1} there exists a positive integer k such that the
following conditions hold

1 q := kp + 1 is a prime,

2 q splits in Z[ 1+
√

21
2 ],

3 q | NormQ(
√

21)/Q(( 5+
√

21
2 )k−1)

4 aq(F )2 6≡ 4 (mod p),

5 aq(F )2 6≡ aq(δ)2 (mod p) for all δ ∈ Sk,q ∪ S ′k,q.

Then the equation 32p−3x2p − 4yp = 7z2 has no solutions in coprime odd
integers.
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3. Methods & Sketches for proofs
Theorem 6: The Diophantine equation 7x2 + y2n = 4z3 where n = p is a prime ≥ 11

Combining arguments of Theorem 16 and Theorem 18 allow us to
prove the following result:

Corollary 19 (Chałupka, Dąbrowski, Soydan-2022)

The equation 331x34− 4y34 = 7z2 has no solutions in coprime odd integers.

The computation took about 51 hours.
Using the steps in "Kraus type criterion" and "the strategy of
Bennett-Skinner" we prove the following (go back slide 67–> Prop.
15):

Proposition 20 (Chałupka, Dąbrowski, Soydan-2022)

The Diophantine equation α38 − 4β19 = 21v2 has no solution in coprime
odd integers.
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3. Methods & Sketches for proofs
The case n = 5 for Theorem 5

Now we consider the eq. 7x2 + y10 = 4z3. Here we apply Chabauty
method.

In 1941, Claude Chabauty proved the finiteness of the number of
rational points on curves of genus g > 0 with a jacobian of
Mordell-Weil rank < g over Q.
This is a method for finding the rational points on a curve C of genus
at least 2, that applies when the Mordell-Weil group of Jac(C ) has
rank less than the genus of C. It involves doing local calculations at
some prime where C has good reduction.
Here we consider the Diophantine equations

α2p − 4βp = 21v2

and
32p−3α2p − 4βp = 7v2

with p = 5.
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3. Methods & Sketches for proofs
The case n = 5 for Theorem 5

Then these Diophantine equations transform to the curves

C1 : Y 2 = 84X 5 + 21

and
C2 : Y 2 = 28X 5 + 37 × 7.

Now Jac(Ci ) (i = 1, 2) have Q-rank 0, and using Chabauty0, we
obtain Ci (Q) = {∞} (i = 1, 2), and the assertion follows.
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3. Methods & Sketches for proofs
Why is the proof of Theorem 5 with n = 7 hard ? (the eq. 7x2 + y14 = 4z3)

Here we discuss a few approaches to this equation and the obstacles
to making them work here.

(i) The modular method. We may consider the equations

α2p − 4βp = 21v2

and
32p−3α2p − 4βp = 7v2

for p = 7: X 14 − 4Y 7 = 21Z 2 and 311X 14 − 4Y 7 = 7Z 2, respectively.
In both cases, we could not exclude the possibility that the Galois
representation associated to the Frey type curve arises from newform
with nonrational Fourier coefficients.
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3. Methods & Sketches for proofs
Why is the proof of Theorem 5 with n = 7 hard ? (the eq. 7x2 + y14 = 4z3)

(ii) Chabauty type approach in genus 3. The Diophantine equations
from (i) lead to the genus 3 curves D1 : y2 = x7 + 212 · 37 · 77 and
D2 : y2 = x7 + 212 · 311 · 77, respectively. Magma calculations show
that the only rational points on Di (Q) (with bounds 109) are points at
infinity, as expected. Magma also shows that ranks of Jac(Di )(Q)
(i = 1, 2) are bounded by 1.
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3. Methods & Sketches for proofs
Why is the proof of Theorem 5 with n = 7 hard ? (the eq. 7x2 + y14 = 4z3)

There are two technical problems to use Chabauty method:

1 One needs explicit rational points of infinite order (not easy to find).
2 There is no readily available implementation of Chabauty’s method for

(odd degree) hyperelliptic genus 3 curves.

Professor Stoll suggested to try the methods of his papers [Stoll,
2018], but we were not able to follow his advise yet.

G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 83 / 103



3. Methods & Sketches for proofs
Why is the proof of Theorem 5 with n = 7 hard ? (the eq. 7x2 + y14 = 4z3)

There are two technical problems to use Chabauty method:
1 One needs explicit rational points of infinite order (not easy to find).
2 There is no readily available implementation of Chabauty’s method for

(odd degree) hyperelliptic genus 3 curves.

Professor Stoll suggested to try the methods of his papers [Stoll,
2018], but we were not able to follow his advise yet.

G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 83 / 103



3. Methods & Sketches for proofs
Why is the proof of Theorem 5 with n = 7 hard ? (the eq. 7x2 + y14 = 4z3)

There are two technical problems to use Chabauty method:
1 One needs explicit rational points of infinite order (not easy to find).
2 There is no readily available implementation of Chabauty’s method for

(odd degree) hyperelliptic genus 3 curves.

Professor Stoll suggested to try the methods of his papers [Stoll,
2018], but we were not able to follow his advise yet.

G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 83 / 103



3. Methods & Sketches for proofs
Why is the proof of Theorem 5 with n = 7 hard ? (the eq. 7x2 + y14 = 4z3)

(iii) Combination of the modular and Chabauty methods. One may
consider a more general Diophantine equation 7x2 + y7 = 4z3, try to
follow the paper [Poonen,Schaefer,Stoll-2007], and then deduce the
solutions for the original Diophantine equation. It seems a very
difficult task, but maybe the only available way ...

Hence we complete the proof of Theorem 5, namely we proved that
the Diophantine equation 7x2 + y2p = 4z3 has no primitive solutions
where 11 ≤ p < 109 and p 6= 13.
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3. Methods & Sketches for proofs
Theorem 7: The Diophantine equation 7x2 + y2n = 4z3 has no primitive solutions for a
family of primes p satisfying:

p ≡ 3 or 55 (mod 106) or p ≡ 47, 65, 113, 139, 143 or 167 (mod 168)

Symplectic method

The symplectic method is due to Halberstadt and Kraus [Halberstadt,
Kraus-2002]. The reason for the name is that the method is conceptually
based on the symplectic behaviour of isomorphic Galois representations.
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3. Methods & Sketches for proofs
Theorem 7: The Diophantine equation 7x2 + y2n = 4z3 has no primitive solutions for a
family of primes p satisfying:

p ≡ 3 or 55 (mod 106) or p ≡ 47, 65, 113, 139, 143 or 167 (mod 168)

Symplectic/anti-symplectic isomorphism

Let p ≥ 3 be a prime. Let E and E ′ be elliptic curves over Q and write
E [p] and E ′[p] for their p-torsion modules. Write GQ for the absolute
Galois group. Let ϕ : E [p]→ E ′[p] be a GQ-modules isomorphism. There
is an element d(ϕ) ∈ F×p such that, for all P,Q ∈ E [p], the Weil pairings
satisfy eE ′,p(ϕ(P), ϕ(Q)) = eE ,p(P,Q)d(ϕ). We say that ϕ is a symplectic
isomorphism if d(ϕ) is a square modulo p and an anti-symplectic
otherwise. If the Galois representation ρE ,p is irreducible then all
GQ-isomorphisms have the same symplectic type.
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3. Methods & Sketches for proofs
Theorem 7:The Diophantine equation 7x2 + y2n = 4z3 has no primitive solutions for a
family of primes p satisfying:

p ≡ 3 or 55 (mod 106) or p ≡ 47, 65, 113, 139, 143 or 167 (mod 168)

Application of the symplectic method

Write ∆ and ∆′ for minimal discriminants of E and E ′. Suppose E and E ′

have potentially good reduction at a prime l . Set ∆̃ = ∆/lvl (∆) and
∆̃′ = ∆′/lvl (∆′). Define a semistability defect e as the order of the group
Gal(Qun

l (E [p])/Qun
l ). Define e ′ in the same way. Note that if E [p] ∼= E ′[p]

then e = e ′ [Bennett, Chen, Dahmen,Yazdani-2015]. If l ≥ 5 then e is the
denominator of vl(∆)/12 [Kraus-1990]. We apply the following criterion:

G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 87 / 103



3. Methods & Sketches for proofs
Theorem 7: The Diophantine equation 7x2 + y2n = 4z3 has no primitive solutions for a
family of primes p satisfying:

p ≡ 3 or 55 (mod 106) or p ≡ 47, 65, 113, 139, 143 or 167 (mod 168)

Lemma 10 (Freitas, Kraus-2022)

Let p ≥ 5 and l ≡ 3 (mod 4) be prime numbers. Let E and E ′ be elliptic
curves over Ql with potentially good reduction and e = 4. Set

r =

{
0 if vl(∆) ≡ vl(∆′) (mod 4),

1 otherwise,
t =

{
1 if

(
∆̃
l

)(
∆̃′

l

)
= −1,

0 otherwise.

Suppose that E [p] and E ′[p] are isomorphic G
l
-modules. Then

E [p] and E ′[p] are symplectically isomorphic ⇔
(
l

p

)r (2
p

)t

= 1.
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3. Methods & Sketches for proofs
Theorem 7: The Diophantine equation 7x2 + y2n = 4z3 has no primitive solutions for a
family of primes p satisfying:

p ≡ 3 or 55 (mod 106) or p ≡ 47, 65, 113, 139, 143 or 167 (mod 168)

Using the above lemma and a result of Kraus, we can prove the
following proposition:

Proposition 21 (Chałupka, Dąbrowski, Soydan-2022)

The Diophantine equation 32p−3X 2p − 4Y p = 7Z 2 has no solution in
coprime odd integers for any prime p ≡ 47, 65, 113, 139, 143 or 167
(mod 168).
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3. Methods & Sketches for proofs

A small example for symplectic method

Let (a, b, c) be a solution in coprime odd integers of the equation
32p−3α2p − 4βp = 7v2. Following Bennett-Skinner (BS) strategy, we
consider the following Frey type curve associated to (a, b, c)

E = E (a, b, c) : Y 2 = X 3 + 7cX 2 − 7bpX . (18)

We have ∆E = 24 · 32p−3 · 73(ab)2p and NE = 588 ·
∏

l |ab l (resp.
1176 ·

∏
l |ab l) if b ≡ 3 (mod 4) (resp. b ≡ 1 (mod 4)). Using a corollary

in BS, we obtain, that the associated Galois representation

ρE ,p : Gal(Q̄/Q)→ GL2(Fp)

is irreducible for all primes p ≥ 7. From BS, we know, that ρE ,p arises from
a cuspidal newform f of weight 2, level N = 588 (resp. 1176), and trivial
Nebentypus character.

G.SOYDAN Gen. Fermat Eq. 2 May 2023, Chambery 90 / 103



3. Methods & Sketches for proofs

A small example for symplectic method
For the level 1176, there are 15 rational-nonrational newforms. For
example, the newform f9 is given by

q + q3 + 2q5 + q9 + 4q11 + 2q13 + 2q15 − 2q17 + 4q19 · · ·

f9 ∈ S2(1176) corresponds to the isogeny class 1176I . For each curve F in
this class the semistability defect at 7 is equal 2, while the semistability
defect of E at 7 equals 4. Hence from we have ρE ,p 6∼= ρF ,p for p ≥ 11.
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3. Methods & Sketches for proofs
Theorem 7: The Diophantine equation 7x2 + y2n = 4z3 has no primitive solutions for a
family of primes p satisfying:

p ≡ 3 or 55 (mod 106) or p ≡ 47, 65, 113, 139, 143 or 167 (mod 168)

Application of quadratic reciprocity

For a given field K , let (, )K : K× × K× → {±1} be the Hilbert symbol
defined by

(A,B)K =

{
1 if z2 = Ax2 + By2 has a nonzero solution inK ,
−1 otherwise.

Note that the Hilbert symbol is symmetric and multiplicative. We will let
(, )q, (, ) and (, )∞ to denote (, )Qq , (, )Q and (, )R, respectively.
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3. Methods & Sketches for proofs
Theorem 7

Application of quadratic reciprocity

Let A = qαu, B = qβv , with u, v q-adic units. If q is an odd prime, then

(A,B)q = (−1)αβ
q−1
2

(
u

q

)β (v

q

)α
,

and
(A,B)2 = (−1)

u−1
2

v−1
2 +α v2−1

8 +β u2−1
8 .

For all nonzero rationals a and b, we have∏
q≤∞

(a, b)q = 1 (19)

We need the following Lemma:
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3. Methods & Sketches for proofs
Theorem 7:The Diophantine equation 7x2 + y2n = 4z3 has no primitive solutions for a
family of primes p satisfying:

p ≡ 3 or 55 (mod 106) or p ≡ 47, 65, 113, 139, 143 or 167 (mod 168)

Lemma 11 (Bennett, Chen, Dahmen, Yazdani-2015)

Let r and s be nonzero rational numbers. Assume that the Diophantine
equation

A2 − rB2p = s(Cp − B2p)

has a solution in coprime nonzero integers A, B and C , with BC odd. Then

(r , s(C − B2))2
∏

2<q<∞
(r , s(C − B2))q = 1,

where the product is over all odd primes q such that vq(r) or vq(s) is odd.
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3. Methods & Sketches for proofs
Theorem 7: The Diophantine equation 7x2 + y2n = 4z3 has no primitive solutions for a
family of primes p satisfying:

p ≡ 3 or 55 (mod 106) or p ≡ 47, 65, 113, 139, 143 or 167 (mod 168)

Using the above lemma and modular approach, we prove the folllowing
result:

Proposition 22

The Diophantine equation 32p−3X 2p − 4Y p = 7Z 2 has no solution in
coprime odd integers for any prime p satisfying p ≡ 3 or 55 (mod 106).

Hence the proof of Theorem 7 is completed.
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Thank you for your attention!

Merci pour votre attention!
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